
Calisto[™] H1

User Guide

This Manual is solely the property of the Doble Engineering Company (Doble) and is provided for the exclusive use of Doble Clients under contractual agreement for Doble Test equipment and services.

In no event does Doble assume the liability for any technical or editorial errors of commission or omission; nor is Doble liable for direct, indirect, incidental, consequential damages, or lost profits arising out of or the inability to use this Manual.

Government Restricted Rights Legend: Use, Duplication, or Disclosure by the U.S. Government is subject to restrictions as set forth in subparagraphs (c)(1) and (c)(2) of the Commercial Computer Software - Restricted Rights Clause at FAR 52.227-19.

This Manual is protected by copyright, all rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise without express written permission from Doble.

Doble and the Doble logo are trademarks of Doble Engineering Company.

Microsoft, Windows, and Windows 10 are registered trademarks of Microsoft Corporation in the United States and/or other countries.

©1999-2024 Doble Engineering Company

All Rights Reserved

TP-CH1-UG Rev C

02/2024

Contents

Preface	5
1. Introduction	7
2. Features	8
Sensor	8
Mechanical	8
Electrical	8
3. Electrical Interface	9
Power Supply	9
Ground	9
Data+	9
Data-	9
RS485 Interface	9
4. Default Settings	1
Calisto H1 Default Settings	1
5. Installation 1	2
Handling Precautions	2
6. Operation 1	3
Startup	3
7. Modbus	4
Exception Response	6
Modbus Command Register Definitions	9
Unit Status	6
Error Status	7

User-Defined Oil Type Configuration Window	27
User-Defined Oil Type Name	28
Ostwald Slope, Slope (m)	28
Ostwald Offset, Offset (b)	28
Oil Type Operations	28
8. Firmware Upgrade	29
A. LEGAL NOTICE	30
Disclaimer	30
Warranty	31
Equipment Limited Warranty	31
Software Limited Warranty	32
Limitations of Remedies	32
Maintenance	33
B. Modbus Address Programming	34

Preface

This guide is intended for anyone who works with Calisto H1 online hydrogen monitoring sensor. It is assumed that the reader is familiar with professional standards and safety practices.

This document uses two special typefaces to indicate particular kinds of information:

• **Bold**—Used for software controls and user-entered text, such as buttons, check boxes, or other items that are clicked or selected. Example:

Click Close.

Also, any text you must type in is shown in this typeface. Example:

Type in **1500 ms.**

• Monospace—Used for text displayed in the user interface, such as an error message or prompt. Example:

Uploading test results.

Notes, Cautions, and Warnings

This document uses icons to draw your attention to information of special importance, as follows.

Note: Notes provide supplemental information that may apply to only some circumstances.

Caution: Cautions provide information that prevents damage to hardware or data.

Warning: Warnings provide information about anything that can affect operator health.

Support

For customer service, contact Doble. Global Telephone: 617-926-4900 Email: support@doble.com Web: www.doble.com Doble Engineering Company 123 Felton Street Marlborough, MA 01752 USA

1. Introduction

The Calisto[™] H1 is designed to detect and measure hydrogen as a component of transformer oil. The hydrogen-specific solid-state sensing element is designed for ease of use and interface flexibility. The Calisto[™] H1 is an online hydrogen monitoring sensor for distribution class transformers. The sensor provides calibrated hydrogen readings through Modbus protocol over a 2-wire RS485 bus. The measured hydrogen is reported as ppm H2 dissolved in oil and is comparable to industry standard DGA measurements. Oil temperature at the sensing element is measured and available through the digital interfaces.

This document has been updated for use with firmware revision 1:18:A.

Note: Pictures of the devices that are shown throughout this guide are representative, and may not be identical to their in practice counterparts due to ongoing product development.

2. Features

Sensor

The Calisto[™] H1's hydrogen measurement is based on a solid state palladium alloy sensor.

- Calibrated to measure hydrogen dissolved in transformer oil
- Periodic reference cycles are automatically run to eliminate offsets affecting long term stability
- No maintenance, long life sensing element

Warning: The sensor element may be damaged if exposed to hydrogen concentrations above 5,000 ppm.

Mechanical

The Calisto[™] H1 is a rugged waterproof mechanical assembly design for distribution transformer applications. A ¾"-14 NPT fitting is provided for attachment of the sensor to a transformer. Overall dimensions are shown below.

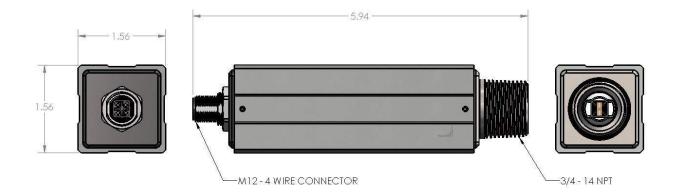


Figure 1 - Calisto™ H1

Electrical

The Calisto[™] H1 uses a single M12 4-pin connector for power and communications.

- DC power input of 9 to 48 volts, 10 watts
- 2-wire RS485 for Modbus RTU communications

3. Electrical Interface

All electrical connections are supplied through a 4-pin M12 connector. The key location and pin numbers are shown below.

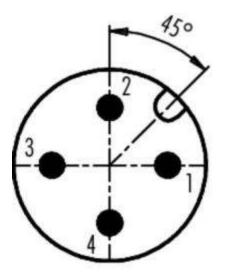


Figure 2 - Key Location and Pin Numbers

Power Supply

Connect a DC power source rated for 9 to 48 volts, 10 watts to pin 1. 28 VDC or 48 VDC power supply is recommended.

Ground

Connect DC ground to pin 2.

Data+

Connect the RS485 Data+ signal to pin 3.

Data-

Connect the RS485 Data- signal to pin 4.

RS485 Interface

The RS485 input is isolated inside the Calisto H1 to improve noise immunity in harsh electrical environments. The Calisto H1 does not have line biasing built into the device.

When networking the device to a supervisory device, please ensure that line biasing is provided by another device on the same network bus. A 120-ohm termination resistor, between Data+ and Data- is installed in the Calisto H1.

4. Default Settings

Calisto H1 Default Settings

Please note the following default settings for the Calisto[™] H1 when setting up a device:

- Baud Rate: 19200
- Word Length: 8
- Parity: None
- Stop Bits: 1
- Modbus slave address: 1

5. Installation

Attach the sensor to ³/₄"-14 NPT fitting on the oil tank. Adapter bushing for larger ID fittings can be used; however, do not use adapters to smaller ID fittings or pipes. The sensor should be mounted in a horizontal position to prevent an air bubble from forming around the sensor element. Any piping or valves between the sensor and oil tank should have an inner diameter greater than 1" and a total length less than 8". Additional installation notes are listed below.

- Do not allow debris to accumulate around the sensor element
- Use thread-sealing tape
- Provide means to evacuate gas bubbles in pipe fittings between sensor and oil tank
- Do not install sensor in turbulent oil flow

Handling Precautions

The following precautions must be followed to ensure the sensor assembly is not damaged during handling.

- Do not poke anything into the open end around the sensor element
- Place wrench close to the threaded end when tightening
- Do not overtighten

6. Operation

Startup

After connecting the cable and turning on the power supply, the sensor executes a warmup sequence lasting several minutes. The following operations are done during the warmup sequence:

- Performs system self-test
- Restores configuration settings from non-volatile memory
- Starts the sampling system to measure hydrogen and oil temperature
- Runs autocalibration sequence to stabilize sensor as needed

Approximate hydrogen readings will be reported by the sensor within 30 minutes. On new installations, the sensor will take up to 16 hours to reach equilibrium and report an accurate hydrogen reading.

Status register 111 bit 15 indicates Not Ready until the first valid hydrogen measurement and then report the most recent measurements.

Warning: If an error is reported, turn off power to the sensor. Then double-check the electrical connections and power supply voltage before turning on power again. If the error condition persists, contact Doble customer service for assistance.

During normal operation, the sensor will periodically measure oil temperature (approximately once/hour) to provide temperature-compensated dissolved gas readings. The unit will also periodically go through an internal calibration check (called reference cycle). These are automatic activities, and no user interaction is required.

7. Modbus

Byte	Modbus Parameter	Range	Meaning
1	Slave address	1-247	Unit ID Address
2	Function Code	03	Read Holding Register
3	Starting Address Hi	0x00-0xFF	Holding Register Hi Byte
4	Starting Address Lo	0x00-0xFF	Holding Register Lo Byte
5	Number of registers Hi	0	Limited by Modbus spec V1.1b
6	Number of Registers Lo	1-125	Number of 16-bit registers Lo Byte
7	CRC Low	0x00-0xFF	CRC Low Byte
8	CRC Hi	0x00-0xFF	CRC High Byte

Table 2 Modbus Read Response Packet

Byte #	Modbus Parameter	Range	Meaning
1	Slave address	1-247	Unit ID Address
2	Function Code	06	Returning Holding Registers
3	Byte Count	7-255	Number of data bytes returned = N
4	1st Data Value HI	0x00-0xFF	
5	1st Data Value Low	0x00-0xFF	
6	6 2nd Data Value Hi		
7	2nd Data Value Low	0x00-0xFF	

2N+4	CRC Lo	0x00-0xFF	CRC Low Byte
2N+5	CRC Hi	0x00-0xFF	CRC High Byte

Note: N is the number of bytes returned, based on the number of registers requested. If N registers are requested, then 2N+5 bytes are returned.

Byte	Modbus Parameter	Range	Meaning
1	Slave Address	1-247	Unit ID Address
2	Function Code	06	Write Holding Registers
3	Register Address Hi	0x00-0xFF	Unit Register Address Hi Byte
4	Register Address Lo	0x00-0xFF	Unit Register Address Lo Byte
5	Data Value Hi Byte	0x00-0xFF	
6	6 Data Value Lo Byte		
7	7 CRC Lo		CRC Low Byte
8	CRC Hi	0x00-0xFF	CRC High Byte

Table 3 Modbus Write Request Packet

Byte	Modbus Parameter	Range	Meaning
1	Slave Address	1-247	Unit ID Address
2	Function Code	06	
3	Register Address Hi Byte	0x00-0xFF	Unit Register Address Hi Byte
4	Register Address Lo Byte	0x00-0xFF	Unit Register Address Low Byte
5	Data Value Hi Byte	0x00-0xFF	
6	Data Value Lo Byte	0x00-0xFF	
7	CRC Lo	0x00-0xFF	CRC Low Byte
8	CRC Hi	0x00-0xFF	CRC High Byte

Table 4 Modbus Write Response Packet

Exception Response

In a normal communications query and response due to a communication error, the master device sends a query to the slave device. Upon receiving the query, the slave processes the request and returns a response to the master device. An abnormal communication between the two devices produces one of four possible events:

- 1. If the slave does not receive the query due to a communications error, then no response is returned from the slave and the master device will eventually process a timeout condition for the query.
- 2. If the slave receives the query but detects a communication error (UART or CRC), then no response is returned from the slave and the master device will eventually process a timeout condition for the query.
- 3. If the slave receives the query without a communications error and takes longer than the master's timeout setting, then no response is returned from the slave. The master device eventually processes a timeout condition for the query. To prevent this condition, the master timeout must be set longer than the maximum response time of the slave (10,000 milliseconds).
- 4. If the slave receives the query without a communications error but cannot process it due to reading or writing to a non-existent slave command register, then the slave returns an exception response message informing the master of the error.

The exception response message has two fields that differentiate it from a normal response. The first is the function code – byte 2. This code will have the high order bit set to a one (i.e., 0x83 for a read exception and 0x86 for a write exception). The second

differentiating field is the exception code – byte 3. In addition, the total exception response length is 5 bytes rather than the normal message length.

Byte	Modbus Parameter	Range	Meaning
1	Slave Address	1-247	
2	Function Code	0x83 or 0x86	Read or write
3	Exception Code	See table below	
4	CRC High	0x00-0xFF	
5	CRC Low	0x00-0xFF	

Table 6 Exception Response Codes

Code	Name	Description
1	Illegal Func- tion Code	The function code received in the query is not an allowable action for the slave. This may be because the function code is only applicable to newer devices, and was not implemented in the unit selected. It could also indicate that the slave is in the wrong state to process a request of this type, for example because it is not configured and is being asked to return register values.
2	Illegal Data Address	The data address received in the query is not an allowable address for the slave. More specifically, the combination of ref- erence number and transfer length is invalid. For a controller with 100 registers, the PDU addresses the first register as 0, and the last one as 99. If a request is submitted with a starting register address of 96 and a quantity of registers of 4, then this request will successfully operate (address-wise at least) on registers 96, 97, 98, 99. If a request is submitted with a starting register address of 96 and a quantity of registers of 5, then this request will fail with Exception Code 0x02 "Illegal Data Address" since it attempts to operate on registers 96, 97, 98, 99 and 100, and there is no register with address 100.

3	Illegal Data Value	A value contained in the query data field is not an allowable value for slave. This indicates a fault in the structure of the remainder of a complex request, such as that the implied length is incorrect. It specifically does NOT mean that a data item sub- mitted for storage in a register has a value outside the expect- ation of the application program, since the MODBUS protocol is unaware of the significance.
4	Slave Device Fail- ure	An unrecoverable error occurred while the slave was attempt- ing to perform the requested action.

Modbus Command Register Definitions

The Command Register definitions for the Gen5 Hydrogen Sensor are identified in Table 7.

Register	Parameter	Function	Data Type	Data Range	Access
		Measureme	ents		
0	Hydrogen, ppm H2 High word		32-bit bin- ary number	0 to 20,000,000	R
1	Hydrogen, ppm H2	Low word	32-bit bin- ary number	0 to 20,000,000	R
2-6		Reserved f	or future use		
7	PCB Temperatur- e, Celsius	x100 scale; 100 offset (T=V/100-100)	16-bit bin- ary number	-100 to +200	R
8	Oil Temperature, Celsius	x100 scale; 100 offset (T=V/100-100)	16-bit bin- ary number	-100 to +200	R
9-12		Reserved f	or future use		
13	Rate of Change, ppm H2 per Day +20,000,000 off- set	High word	32-bit binary number	-100 to +200	R
14	Rate of Change, ppm H2 per Day +20,000,000 off- set	Low word	32-bit binary number	-20,000,000 to +20,000,000	R
15	Rate of Change, ppm H2 per Week	High word	32-bit binary number	-20,000,000 to +20,000,000	R

Table 7 Command Register Locations

	+20,000,000 off- set				
16	Rate of Change, ppm H2 per Week +20,000,000 off- set	Low word	32-bit binary number	-20,000,000 to +20,000,000	R
17	Rate of Change, ppm H2 per Month +20,000,000 off- set	High word	32-bit binary number	-20,000,000 to +20,000,000	R
18	Rate of Change, ppm H2 per Month +20,000,000 off- set	Low word	32-bit binary number	-20,000,000 to +20,000,000	R
19-30		Reserved	for future use		
		Informatio	on		
31-40	Model Number		ASCII String		R
41-50	Product Serial Number		ASCII String		R
51-60	Sensor Serial Number		ASCII String		R
61-70	Sensor Board Serial Number		ASCII String		R
71-80	Reserved for future use				
81	Manufacturing Date	High byte: Month Low byte: Day	32-bit binary value		R

82	Manufacturing Date	Year	32-bit binary value		R	
83	Factory Calibration Date	High byte: Month Low byte: Day	32-bit binary value		R	
84	Factory Calibration Date	Year	32-bit binary value		R	
85-86		Reserved f	or future use			
87	Dissolved Gas Calibration Date	High byte: Month Low byte: Day			R	
88	Dissolved Gas Calibration Date	Year			R	
89-98	Firmware Revision		ASCII String		R	
99-110		Reserved f	or future use			
		Status/Error Info	rmation			
111	Status	Refer to Unit Status section	16-bit binary flags	See Table 8	R	
112	Error Status	Refer to Error Status section High word	32-bit binary flags	See Table 9	R	
113	Error Status	Refer to Error Status section Low word	32-bit binary flags	See Table 9	R	
114-120 Reserved for future use						
	Calibration Functions					
121	DA Command		None	Section	W	

122	DB Command	Write reg 126- 129 first	None	Section	W
123-124		Reserved f	or future use		
125	DC Command	Clear DGA calibratio n	None		w
126	Calibration Gas, ppm H2	High word	32-bit binary number	0 to 1,000,000	R/W
127	Calibration Gas, ppm H2	Low word	32-bit binary number		R/W
128	Calibration Date	High byte: Month Low byte: Day	32-bit binary number		R/W
129	Calibration Date	Year	32-bit binary number		R/W
130-135		Reserved f	or future use		
		Configuration Se	ettings		
136-143	User-defined oil type name	Refer to user- defined oil type configuration section.	ASCII String		R/W
144	Ostwald Slope, m	Refer to user- defined oil type configuration section.	16-bit binary number		R/W
145	Ostwald Slope, m	Refer to user- defined oil type configuration section.	16-bit binary number		R/W

146	Ostwald Slope, b	Refer to user- defined oil type configuration section.	16-bit binary number		
147	Ostwald Slope, b	Refer to user- defined oil type configuration section.	16-bit binary number		
148	Oil type operations	Refer to user- defined oil type configuration section.	16-bit binary number	1 = open edit 2 = close edit 3 = abort edit	R/W
149		Reserved f	or future use		
150	Set Unit ID		8-bit binary number	1 to 247	R/W
151	Operating Mode		16-bit binary number	0 = Field 1 = Lab	R/W
152	Oil type selection	Select oil type	16-bit binary number	0 = Mineral 1 = Silicone 2 = FR3 3 = MIDEL	R/W
153-159		Reserved f	or future use		
160	Baud Rate		8-bit binary	1 = 9600 2 = 14400 3 = 19200 4 = 38400 5 = 57600 6 = 115200 Note: device must be	R/W

161-174		Reserved f	or future use	power cycled for baud rate change to take place.	
	1	Diagnostic	S		
175	Month/Year	Date & Time; read register 175 first; order high-byte / low-byte; add 2000 to year (64-bit)	Two bytes		R/W
176	Hour/Day	Date & Time; read register 175 first; order high-byte / low-byte; add 2000 to year (64-bit)	Two bytes		R/W
177	Second/Minute	Date & Time; read register 175 first; order high-byte / low-byte; add 2000 to year (64-bit)	Two bytes		R/W
178	Millisecond	Date & Time;	16-bit bin-		R/W

		read register 175 first; order high-byte / low-byte; add 2000 to year (64-bit)	ary number	
179-200		Reserved f	or future use	
		User Informa	tion	
201-210	Owner ID	Must start reading from low address Must write high and low addresses to save string	ASCII String	R/W
211-220	Substation ID	Must start reading from low address Must write high and low addresses to save string	ASCII String	R/W
221-230	Transformer ID	Must start reading from low address Must write high and low addresses to save string	ASCII String	R/W
231-255		Reserved f	or future use	· · ·

Note: When reading registers containing 32 or 64-bit integers the user must read the high order word first, then the lower order word(s). Reading of the high order word causes the low order to be saved in a temporary location for the next register read. The second register is then automatically read from the temporary location by the firmware. Likewise, with a write, the high value is stored until the second value is received at which time both values are written to the instrument.

Unit Status

(i

Unit status information is maintained in Modbus register 111. The bit map for this status word is described below.

Bit #	Description	
2-0	Unlisted Bits are not used and may be 0 or 1	
	Sensor A state Information:	
5-3	001 – Hydrogen measurement cycle	
5-5	010 – Oil temperature measurement cycle 011 – Auto calibration cycle	
	100 – Oil temperature too high	
6		
7		
8		
9	Unlisted bits are not used and may be 0 or 1	
10		
11		
12	Error, indicates an unrecoverable error occurred, read Reg 112,113 for more information	
13	Unlisted bits are not used and may be 0 or 1	

Table 8 Unit Status

14	New measurement data available, auto-clear after register read
15	Unit Ready, hydrogen readings are valid

Error Status

When the error flag (bit 12) of the Unit Status register 111 is set, this 32-bit register has more information about what is causing the error. The bit map is shown below, unlisted bits are reserved.

Bit #	Hex Value	Description
31	0x8000 0000	Sensor – Heater fault
30	0x4000 0000	Sensor - Temperature Sensor Fault
29	Ox2000 0000Sensor – Hydrogen Sensor Fault	
3-28	0x1000 0000 -0x0000 0008	Unlisted bits are not used and may be 0 or 1.
2	0x0000 0004	PCB Temperature greater than 105C
1	0x0000 0002	Configuration data not available
0	0x0000 0001	Configuration data not valid

Table 9 Error Status

User-Defined Oil Type Configuration Window

GRIDSCAN 5000 can operate in a variety of oil types and comes configured for four popular types: Mineral, Silicone, Natural Ester (FR3), and Synthetic Ester (Midel). The end user can select one of programmed oil types or modify the fourth, user configurable oil type. The Oil Type Configuration Window registers are used to read and modify the user-defined Oil Type configuration data structure. This includes the name, and Ostwald values for slope and offset.

Note: These values are a critical part of the hydrogen calculation. Incorrect values impede the measurement and monitoring capabilities of the sensor.

i

For example: programming the Ostwald values for Midel 7131 m=0.000093, b=0.039739 are used in the following instructions.

The sequence of operations to program a new oil type are:

- 1. Write register 148 with 0x0001 to open the user configurable oil type for edit
- 2. Write registers 136-143 with the name of the oil
- 3. Write registers 144,145 with the Ostwald slope
- 4. Write registers 146,147 with the Ostwald offset
- 5. Write register 148 with 0x0002 to save the values and close

User-Defined Oil Type Name

The name of the user defined oil type is accessed in registers 136-143. Reading these registers will return the current value. Write these registers with a null terminated string to modify the name. The default value is "Synthetic Ester\0" for Midel 7131.

- A string length 15 characters
- Null-terminated with at least one bye of 0x00

Ostwald Slope, Slope (m)

The default value is 1093 (0x0000,0x0445) for Midel 7131. This is calculated using a scale factor of 1,000,000 and an offset of \pm 1,000; Data32 = (m \pm 1,000) \pm 1,000,000.

- Register 144, High 16-Bit value of Data32 (0x0000)
- Register 145, Low 16-Bit value of Data32 (0x0445)

Ostwald Offset, Offset (b)

The default value is 40,739 (0x0000, 0x9F23) for Midel 7131. This is calculated using a scale factor of 1,000,000 and an offset of \pm 1,000; Data32 = (m \pm 1,000) \pm 1,000,000.

- Register 146, High 16-Bit value of Data32 (0x0000)
- Register 147, Low 16-Bit value of Data32 (0x9F23)

Oil Type Operations

Writing register 148 is used initiate operations to edit and save the user defined oil type.

- Value = 1, starts configuration edit for user-defined Oil type.
- Value = 2, ends the edit and saves the new configuration settings
- Value = 3, aborts the operation and nothing is changed

8. Firmware Upgrade

Calisto[™] H1 firmware is field upgradable. Instructions and PC software will be provided by Doble as needed.

A. LEGAL NOTICE

Disclaimer

This material is provided for informational purposes. DOBLE MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Doble shall not be liable for errors, omissions, or inconsistencies that may be contained herein or for incidental or consequential damages, including, but not limited to, damage or loss of use of equipment, plant or power system, cost of capital, loss of power, additional expenses in the use of existing power facilities, or claims against the purchaser or user by its customers in connection with the furnishing, performance, or use of this material. Information in this document is subject to change without notice and does not represent a commitment on the part of Doble. The information in this material is not all-inclusive and cannot cover all unique situations.

The meaning of **WARNING** messages used in this material:

A procedure, practice, or condition that could cause bodily injury or death.

Before operation, ensure you have reviewed all the risks associated with the equipment listed in this material and other product materials.

WARNING

If the equipment is used in a manner not specified by the manufacturer, including, without limitation, in connection with abnormal operating conditions, the protection provided by the equipment may be impaired.

WARNING

Do not open the equipment cabinet during rain, snowstorms, or other inclement weather.

WARNING

User must have the capability to continuously monitor for alerts. If this requirement is not met, delayed reaction to alerts may result in otherwise avoidable asset failure that may result in bodily injury or death.

User is responsible for developing and following an appropriate plan for de-energization in the event of potentially unsafe operating conditions. Potentially unsafe operating conditions include, but are not limited to, the results of vandalism, flooding, severe snow and/or ice storms, by which water or contaminants enter into the asset.

WARNING

There may be cases where the monitored asset(s) suddenly fails (between measurements at the normal measurement interval). The user should be aware that online monitoring equipment is not always capable of detecting such rapid (often catastrophic) failures. Asset monitoring is designed to detect incipient, slow-developing faults, but may also be able to

detect more rapidly-developing faults, depending on the specific monitoring device that has been deployed. Other protective devices should be

used in conjunction with monitoring equipment to provide more complete protection for the transformer.

WARNING

If the transformer bushings are replaced, then bushing adaptor circuit integrity checks shall be implemented and the bushing nominal parameters updated before the transformer is returned to service. Refer to the instruction manual. If the bushing is replaced by a mechanically and/or electrically different bushing a new bushing adaptor may be required.

WARNING

If the transformer bushings are subjected to routine maintenance, then the bushing adapter circuit integrity checks should be implemented before the transformer is returned to service. Refer to the IDD, T1 manual.

Liability and guarantee

Doble is not liable for damages that occur due to improper use. Proper use also includes the knowledge of, and compliance with, this material. User changes to the equipment that have not been expressly approved by Doble will result in the loss of guarantee. We reserve the right to modify or improve the designs or specifications of our products at any time without notice.

ALERT SETTINGS

The product is supplied with default settings for alert values. As every installation and operating environment is different due to design, manufacturing tolerances, operating regime, etc., there are no settings that can be applied to every asset. It is the user's responsibility to set appropriate alert values. Alert values must also be routinely reviewed and revised, as appropriate, by user depending on bushing behavior.

Alert value settings for online bushing monitoring should not be based on traditional offline results, including, for example those recommended by the IEEE C57.19.100

Warranty

Equipment Limited Warranty

Doble Engineering Company (DOBLE) warrants the products that it manufactures to be free from defects in material and workmanship for a period of one year from the date shipped from the factory.

During the one year warranty period, DOBLE will repair or replace, at its option, any defective products or components thereof at no additional charge, provided that the product or component is returned, shipping prepaid, to DOBLE. The Purchaser is responsible for insuring any product or component so returned and assumes the risk of loss during shipment. All replaced products and components become the property of DOBLE.

THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY PRODUCTS WHICH HAVE BEEN DAMAGED AS A RESULT OF ACCIDENT, MISUSE, ABUSE, OR AS A RESULT OF MODIFICATION BY ANYONE OTHER THAN DOBLE OR AN AUTHORIZED DOBLE REPRESENTATIVE.

EXCEPT AS EXPRESSLY SET FORTH ABOVE, NO OTHER WARRANTIES, EXPRESSED OR IMPLIED, ARE MADE WITH RESPECT TO THE PRODUCT INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. DOBLE EXPRESSLY DISCLAIMS ALL WARRANTIES NOT STATED HEREIN. IN THE EVENT THE PRODUCT IS NOT FREE FROM DEFECTS AS WARRANTED ABOVE, THE PURCHASER'S SOLE REMEDY SHALL BE REPAIR OR REPLACEMENT AS PROVIDED ABOVE. UNDER NO CIRCUMSTANCES WILL DOBLE BE LIABLE TO THE PURCHASER OR ANY USER FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, PERSONAL INJURY OR PROPERTY DAMAGE CAUSE BY THE PRODUCT, ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES, EXPENSES, LOST PROFITS, LOST SAVINGS, OR OTHER DAMAGES ARISING OUT OF THE USE OF OR INABILITY TO USE THIS PRODUCT.

Software Limited Warranty

THIS SOFTWARE PRODUCT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THIS SOFTWARE PRODUCT IS WITH PURCHASER SHOULD THE PRODUCT PROVE DEFECTIVE. PURCHASER (AND NOT DOBLE OR AN AUTHORIZED DEALER) ASSUMES THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR, OR CORRECTION.

Some states do not allow the exclusion of implied warranties, so the above exclusion may not apply. This warranty gives the purchaser specific legal rights and the purchaser may also have other rights which vary from state to state.

DOBLE warrants the disks on which the software product is furnished to be free from defects in materials and workmanship under normal use for a period of one hundred and twenty (120) days from the date of shipment from DOBLE.

Limitations of Remedies

DOBLE's entire liability and Purchaser's exclusive remedy shall be:

The replacement of any disks not meeting DOBLE's "limited warranty" which are returned to DOBLE.

If DOBLE is unable to deliver replacement disks which are free from defects in materials and workmanship, Purchaser may terminate this agreement. By returning the software product and all copies thereof in any form and affirming compliance with this requirement in writing, DOBLE will refund the purchase price.

IN NO EVENT WILL DOBLE BE LIABLE TO PURCHASER FOR ANY DAMAGES, INCLUDING ANY LOST PROFITS, LOST SAVINGS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE SUCH SOFTWARE PRODUCT, EVEN IF DOBLE OR AN AUTHORIZED DEALER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY.

Some states do not allow the limitation or exclusion of liability for incidental or consequential damages, so the above limitation or exclusion may not apply.

Maintenance

For equipment maintenance, contact: Doble Engineering Company 123 Felton Street Marlborough, MA 01752 (USA) Telephone: 617-926-4900 FAX: 617-926-0528 Email: support@doble.com Web: www.doble.com

B. Modbus Address Programming

Note the following before you start modbus address programming:

- A USB to RS485 converter is required to program the address on Calisto H1. The USB to R485 converter must have line biasing on the RS485 line. Recommended USB adapter: EZSync010 https://purenitetech.com/product/ezsync010/
- Download Modbus Tester application using this link https://www.se.com/library/SCHNEIDER_ELECTRIC/SE_LOCAL/APS/209280_ 3412/Tester.exe
- 1. Power the Calisto H1 using a DC power supply and connect it to your PC using a USB to RS485 dongle.
 - Connect the RS485 data wires from Calisto H1 to the USB to RS485 converter and make sure the polarity is correct.

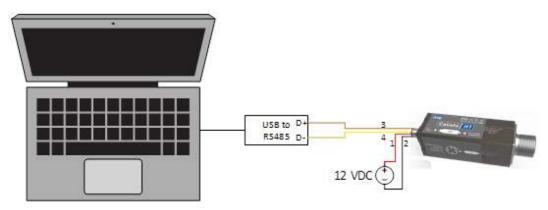


Figure 3 - Connection Setup

2. Open the Device Manager on your PC and identify the COM port assigned to your converter when the USB to RS485 is connected. See the example below, in which the USB dongle was assigned COM4:

📇 Device Manager	_	\times
File Action View Help		
🚽 WAN Miniport (Network Monitor)		^
🚽 WAN Miniport (PPPOE)		
🚽 WAN Miniport (PPTP)		
🚽 WAN Miniport (SSTP)		
✓ ↓ ② Other devices		
📓 Base System Device		
🙀 PCI Data Acquisition and Signal Processing Controller		
R PCI Device		
> 📃 Portable Devices		
✓		
🛱 Intel(R) Active Management Technology - SOL (COM3)		
USB Serial Port (COM4)		
🛱 USB Serial Port (COM5)		

Figure 4 - Device Manager Ports

3. Open the Modbus application - Modbus Tester.

Generic Modbus/Jbus Tester		- 🗆 🗙
Port: Baud: Parity: TCP/IP	Display Mode © Decimial © He	
Communications Wiring: Wiring with No Echo (4-wire)	400001 -> 0	Transaction 0 Time in ms:
TCP/IP Address or URL:	0 -> 0	Minimum Transaction 0 Time in ms:
254.254.254	0 .> 0	Protocol
Sample Mode: Manual 🔽	0 .> 0	Modbus
Timeout in ms: 20000 Sample Rate in ms: 1	0 -> 0	C Jbus
Data Type:		C ASCII
Holding Register (R03 / W16)		
Slave ID: Starting Register: # of Registers:	0 -> 0	Stop
	0 -> 0	Read
Automated Error Count:	0 -> 0	Write
Scheduled Transaction Count:	0 -> 0	Exit

Figure 5 - Modbus Tester Default Settings

Update the following fields:

- Port: COM4 (Might be a different COM on your PC)
- Baud: 19200
- Parity: None
- Data Type: Holding Register (R03 / W16)
- Slave ID: 0 (broadcast address)

- Starting Register: 151 (Set unit ID register)
- # of Registers: 1

Now enter the desired Modbus address that you want to set on the unit. Type in the desired address in the field to the right of the unit ID box. You don't need to know the current address on the unit to set the new address, that's the purpose of using the broadcast address. On this example the address is set to 2.

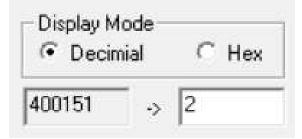


Figure 6 - Modbus Address Entry

Generic Modbus/Jbus Tester	- 🗆 ×
Port: Baud: Parity: COM4 19200 None	Display Mode Transaction O C Decimial O Hex
Communications Wiring: Wiring with No Echo (4-wire)	400151 -> 2 Transaction 0 Time in ms: Minimum
TCP/IP Address or URL:	0 -> 0 Transaction 0 Time in ms:
254.254.254	0 -> 0 Protocol
Sample Mode: Manual	0 -> 0 Modbus
Timeout in ms: 20000 Sample Rate in ms: 1	0 → 0 C Jbus
Data Type: Holding Register (R03 / W16) ▼	0 → 0 ASCI
Slave ID: Starting Register: # of Registers:	0 -> 0 Stop
0 151 1	0 -> 0 Read
Automated Error Count:	0 -> 0 Write
Scheduled Transaction Count:	0 -> 0 Exit

Figure 7 - Modbus Configured to Write Address 2 to N1

Now click 'Write', at bottom-right of the screen, to send the write command to the unit. There is no confirmation the address was successfully written. A good indication the command was successful is if there is no CRC error popping up or the application not becoming unresponsive.

Figure 8 - CRC Error

This error usually occurs when using a USB dongle without line biasing

4. To confirm that the new address has been successfully programmed on the unit, try to read the oil temperature register using the new programmed address.

Change the following:

- Slave ID: 2 (The address you have configured on your unit)
- Starting Register: 9 (Oil temperature register address)

Click Read, above Write button, to view the current temperature.

Port: COM4 💌	Baud:	Parity: None 💌	Display M		⊂ Hex	Maximum Transaction 15 Time in ms:		
Communications \	Wiring: Wiring with N	lo Echo (4-wire) 💌	400009	- .>	13701	Transaction 15 Time in ms:		
TCP/IP Address (0	•>	0	Minimum Transaction 15 Time in ms:		
254.254.254.254			0	>	0	Protocol		
ample Mode:	Manual	•	0	>	0	- 🤄 Modbus		
l'imeout in ms: Data Type:	20000 Sample Ra	Sample Rate in ms: 1		>	0	C Jbus		
Holding Register	(R03 / W16)	•	0	•>	0	ASCII		
lave ID:	Starting Register:	# of Registers:	0	•	0	Stop		
2	9	1	0	>	0	Read		
utomated Error C	ount: 0		0	>	0	Write		
	0		0	>	0	Exit		

Figure 9 - Configuration to Read Oil Temperature Register from H1 Address 2

Upon successful reading, the temperature count is shown in the field next to the box contatining the oil temperature address.

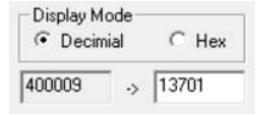


Figure 10 - Raw Temperature Value

Use the following equation to convert the counts to engineering units:

Temperature = (Counts/100) - 100;

The counts in this example is 13701, therefore the temperature is:

Temperature = (13701/100) - 100 = 37.01 °C

By successfully reading the oil temperature using the new Modbus address we have proved that the address writing was also successful and therefore your H1 is ready to be deployed in the field.