
Benefits of an Oil Analysis Testing Program for Electrical Equipment Assessment

Engineering expertise and advanced diagnostics to ensure that all people globally have *reliable, safe* & *secure* energy in a sustainable world

> BUILT ON OVER A CENTURY OF INNOVATION AND EXPERTISE. FOR THE NEXT CENTURY.

ENSURING RELIABILITY IN THE FACE OF RAPID CHANGE

- Clean Energy Transition
- Growing demand for electricity
- Distributed energy & renewables
- Evolving cybersecurity & regulatory requirements
- Keeping up with the IoT
- Artificial intelligence & emerging technologies

With an eye toward the future, Doble will help utilities navigate change – just as we have for the past 100 years.

OPTIMIZE PERFORMANCE WITH DOBLE

PRODUCTS & SOLUTIONS

- Condition monitoring
- Enterprise Asset Management
- Protection testing
- Off-line testing & assessment
- Consulting & testing services
- In-service testing and assessment
- Security & compliance
- Oil standards

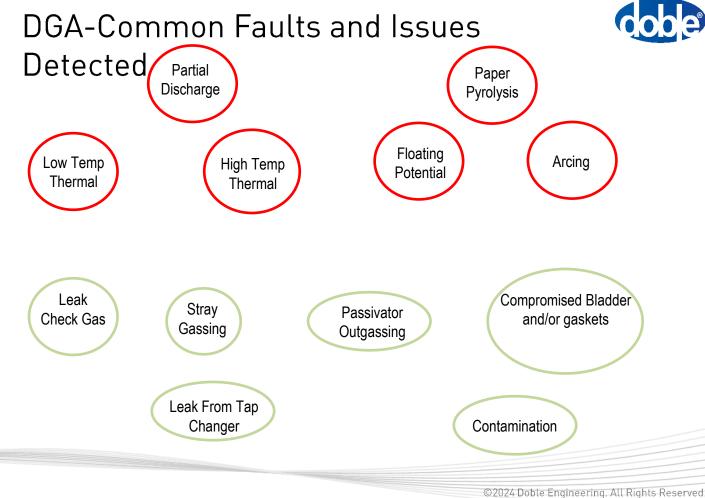
Cables

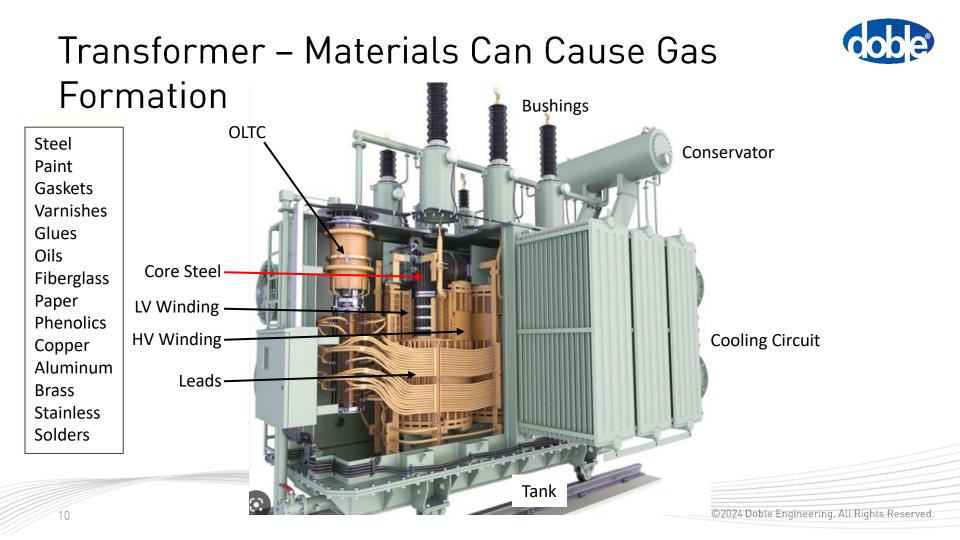
Transformers | Bushings | Circuit Breakers | Rotating Machines | Protective Relays

Agenda

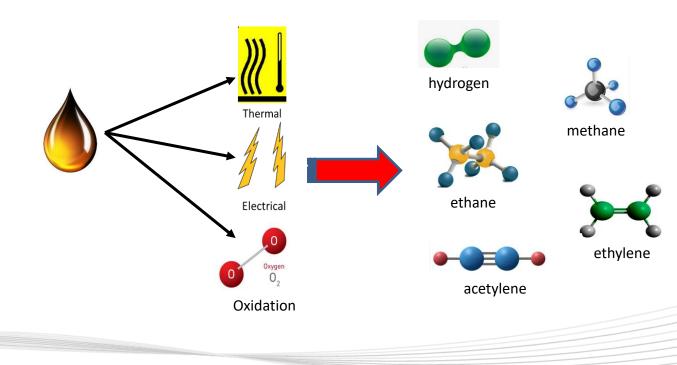
This webinar will provide an overview of the following topics:

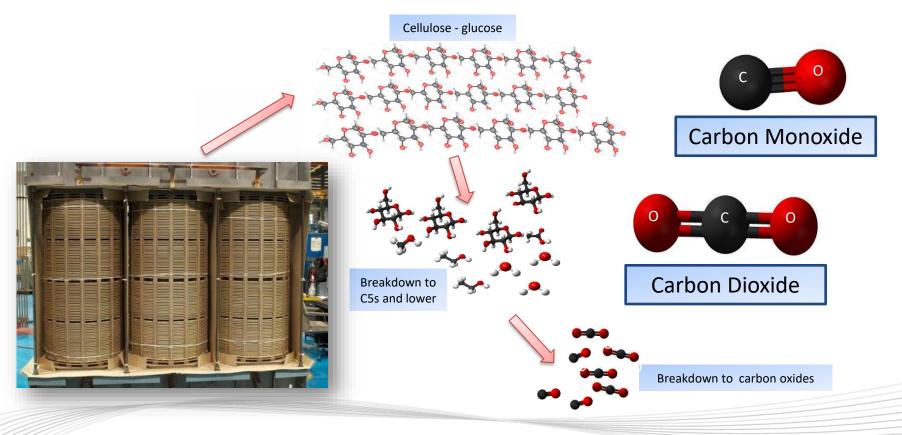
- Dissolved Gases in Oil
- Why assessing the wetness of the insulation system is important
- Tests to assess the condition of the paper and pressboard insulation
- Case studies
- Q&A



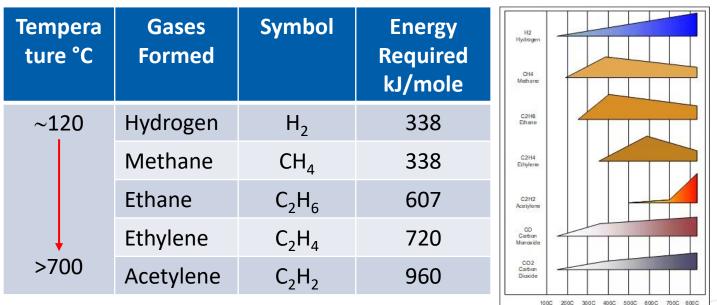

Why Measure Gases in Oil

- Most important diagnostic in the industry
- Excellent indicator of developing faults
- Detect of wide range of problems
- Sensitive in the early stages of development of faults
- Provides information on materials involved in fault
- Provides indication of severity and need for remedial action
- But it can be complex not easily simplified for analysis in all cases





How Gases are Formed – Insulating Liquids


Gases Generated from Paper Decomposition

Gas Formation: Mineral Oil

https://www.tdworld.com/test-and-measurement/article/20972772/building-a-transformer-health-index-part-2

Temperature Profiles

Gas	Overheating Oil
methane and/or ethane, sometimes hydrogen	Low temperature, <300°C
ethylene (mainly)	300 to 700°C
ethylene with any acetylene	Local hotspot >700°C

Combustible and Non-Combustible Gases

Combustible Gas	Symbol	TCG	Non- Combustible	Symbol
Hydrogen	H ₂	TCG = Total Combustible	Gas	
Methane	CH_4	Gas ppm (parts per million)	Carbon Dioxide	CO ₂
Carbon Monoxide	СО	$H_2 + CH_4 + CO + C_2H_6 + C_2H_4 + C_2H_2$	Oxygen	02
Ethane	C_2H_6		Nitrogen	N ₂
Ethylene	C_2H_4			
Acetylene	C_2H_2			

Partition Coefficients (Basis for Method C)

Gas	Ostwald Coefficient
Oxygen	0.138
Nitrogen	0.0745
Carbon dioxide	0.900
Carbon monoxide	0.102
Hydrogen	0.0429
Methane	0.337
Ethane	1.99
Ethylene	1.35
Acetylene	0.938

Interpreting DGA Data

- Norms What is a normal amount
- Total combustible gas Guidelines
- Key gases Identification of type of problem
- Ratios Identification of type of problem (Rogers, IEC 60599, others)
- Trends What's new, gassing rates
- Fingerprints Typical gassing behavior for certain transformer
- Solid insulation is paper or other cellulosic materials involved
- Stray gassing Is the issue sensitive of the oil to overheating
- Duval Triangles and Pentagons
- NEIs (Normalized Energy Index)

Interpreting Dissolved Gas Data

- Nameplate information including age
- Historical data trends
- Has the Total Combustible Gas risen suddenly?
- Is the unit heavily loaded or overloaded?
- Has the oil been processed
- Did a bushing or the transformer fail at some point?
- If the unit has been repaired, was the oil filtered or degassed?

Dissolved Gas Limits Various Sources

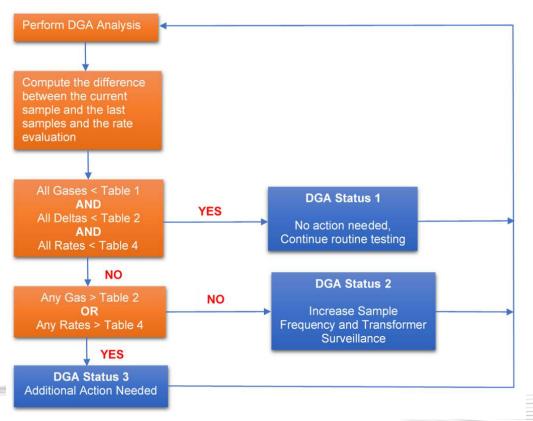
Criterion	H ₂	СО	Methane	Ethane	Ethylene	Acetylene	CO2	TCG
DOBLE	100	250	100	60	100	5 (1)*	10,000 –core** 20,000-shell**	610
IEEE C57.104 ⁺ $O_2/N_2 \le 0.2$ $O_2/N_2 > 0.2$ (2019)	200 90	1100 600	100-200 30-60	70-250 30-40	40-175 80-125	2-4 7	7000-14000 7000-8000	
IEC 60599 (ranges)	50-150	400-600	30-130	20-90	60-280	2-20 (No OLTC) 60-280 (Communicating OLTC)	3800-14,000	

Values based on statistical norms or consensus values

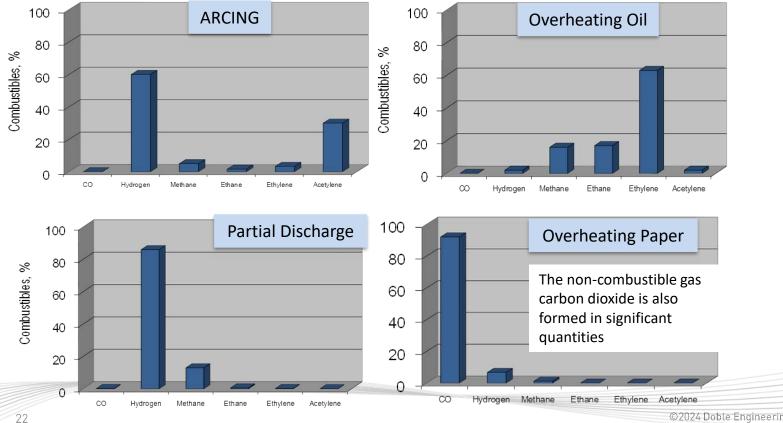
*Would consider 1 ppm or more of acetylene as abnormal for further evaluation

**Empirically based guidelines

⁺IEEE 2019 95th Percentile-ranges cover transformers of different ages


IEEE C57.104 2019

Status	Definition
DGA Status 1	Screening DGA results are acceptable. Continue routine operation
DGA Status 2	Incipient or modest recent gas production or moderately elevated gas level. Resample to confirm and monitor gas evolution.
DGA Status 3	High gas levels or continuing significant gas production. Mitigative actions or other response should be considered (ie continuous monitoring)



IEEE C57.104 2019 Flowchart

Key Gases

Carbon Oxide Gases and Ratios

- Cellulose Insulation
- Shell form > CO₂ than Core form
- Accidental CO₂ from air
- CO₂/CO ratio approaching 1 = high temperature faults
- High CO₂ with low CO-lack of cooling/general overheating
- CO₂/CO ratio trend declining indication of paper overheating

Case Study - DGA

Problems After Factory Rewind

- 1992 General Electric 115kV transmission transformer
- Rewind performed after flashover event caused damage to low voltage C phase winding
- Unit passed all post-repair electrical and oil tests
- Transformer was energized and ~50% loaded for one year

Problems After Factory Rewind

Dissolved gases-in-oil	After Fault – Before Repair, ppm	After Repair, ppm	1-Year After Repair, ppm	
Hydrogen	151	0	26	
Methane	23	0	74	
Carbon Monoxide	394	3.0	84	
Ethane	5.8	0	30	
Carbon Dioxide	4,740	53	466	
Ethylene	6.9	0	99	
Acetylene	7.3	0	Trace	

Rise in Ethylene Values

• Transformer put on bi-monthly sampling schedule, ethylene continues to increase

Sample Date	Hydrogen	Oxygen	Nitrogen	Methane	Carbon Monoxide	Ethane	Carbon Dioxide	Ethylene	Acetylene
08/14/2017	0	3700	12300	0	3.0	0	53	0	0
07/10/2018	20	7,070	73,900	64	64	28	385	95	0
08/14/2018	26	6,010	78,600	74	84	30	466	99	Trace
08/30/2018	24	6,810	81,400	75	81	32	513	103	Trace
09/14/2018	24	5,770	75,800	77	83	34	540	107	Trace
09/28/2018	25	9,980	95,600	82	92	36	568	114	0
10/16/2018	25	5,120	77,400	82	92	35	543	111	Trace

Problems After Factory Rewind

- Bent lamination tips made contact with the tank wall
 - Pressboard spacers were missing
- Rise in ethylene due to unintentional ground/circulating currents

Why assessing the wetness of the insulation system is important

Where Is Water Located

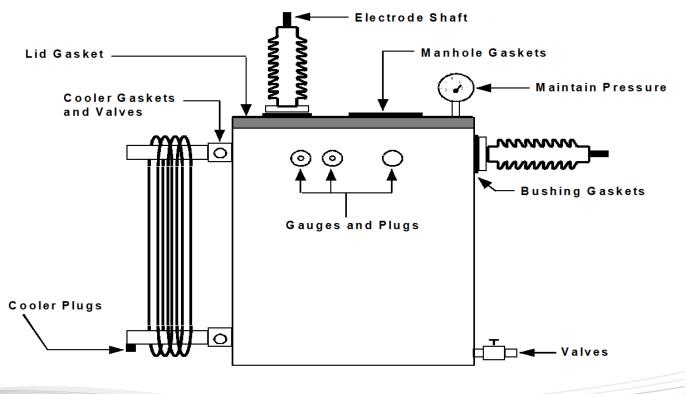
- Most of the water is located in the solid cellulosic insulation
 - Wood
 - Paper
 - Pressboard
- The amount in the oil is often <1% of the total

Entry Points for Water in Transformers

- Residual after processing:
 - Manufacturing
 - Installation
 - Maintenance

Leaks

• Through weak points of transformer


Transformer Preservation System

- Ineffective dryers breathing conservators
- Ruptured bladder/diaphragm sealed conservators
- Byproduct of Cellulosic Degradation

Water Ingress Points

What is the Importance of Water

- Four Main Reasons
 - Dielectric strength is a function of water content
 - Dielectric Strength decreases with increasing water content
 - Creep strength of insulation decreases with increasing water content
 - Rate of paper aging is directly proportional to water content
 - Risk of bubble formation during overloads function of water in paper content
 - Risk of condensation during cool down increases with increasing water content

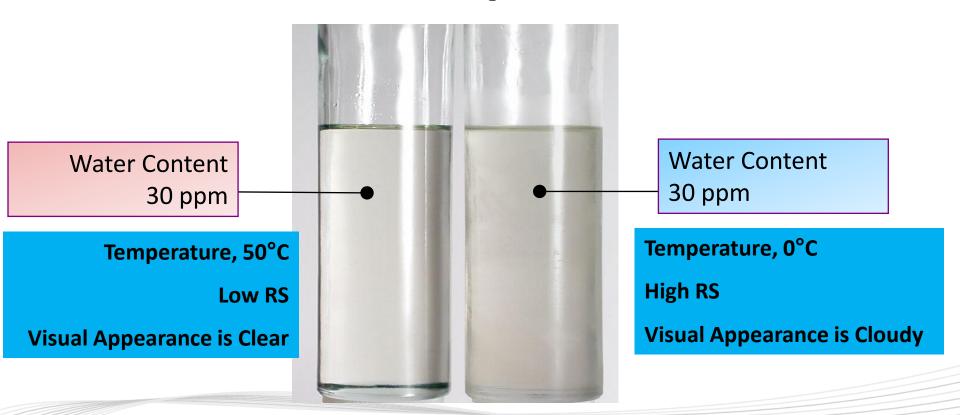
Solubility

- Solubility (100% Saturation) of water in oil is defined as the amount of dissolved water an oil can hold at a specific temperature
- Solubility changes significantly with temperature
- As oil temperature increases, its ability to hold water also increases
- For example, solubility of water in oil at 10°C is 36 ppm, whereas at 90°C the solubility is 592 ppm
- As oils age and accumulate large amounts of acids and other polar compounds solubility increases

Solubility of Water in Insulating Liquids, ppm

		<u> </u>			<u> </u>	<u> </u>
Temp,	°C	Mineral Oi	il Silicone	Askarel	Natural Esters	Synthetic Esters
0		22	88	43	631	1207
10		36	125	63	787	1452
20		55	174	91	966	1726
30		83	237	127	1171	2028
40		122	316	175	1402	2358
50		174	414	236	1661	2717
60		243	533	313	1948	3104
70		333	678	408	2263	3518
80		448	849	523	2607	3960
90		594	1051	662	2981	4428
100		775	1286	827	3385	4921

For Example



- An oil sample was taken from a transformer at:
 - top oil temperature 85°C
 - 30 ppm water in oil
- To determine the relative saturation
 - measured water (30 ppm)
 - divided by the solubility at 85°C (517 ppm)

Relative Saturation (RS) = $\left(\frac{30}{517}\right) \times 100\% = 5.8\%$

Low %RS and High %RS Oil

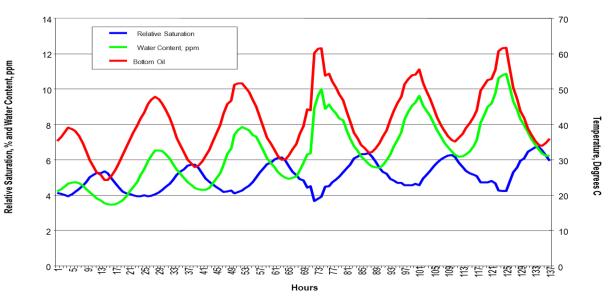
Dielectric Strength Substantially lowered when

- Water content of paper/pressboard significantly reduced as the water content increases to 2 to 4%
- The dielectric breakdown voltage of the dielectric liquid is reduced about in proportion to the relative saturation of water
 - The breakdown voltage is reduced by about 50% when the RS is 50%

Condensation

- Cool down period of thermal transient
 - Water migrates from paper→oil with increasing operating temperature (due to load & ambient temp)
 - At higher temperature, moisture migration is quicker and the solubility of water in oil is high
 - During cool down, water remains mostly in the oil for a long timeas diffusion in paper is slow ... solubility also decreases
 - Excessive water...High RS...low dielectric breakdown voltage
 - Condensation possible

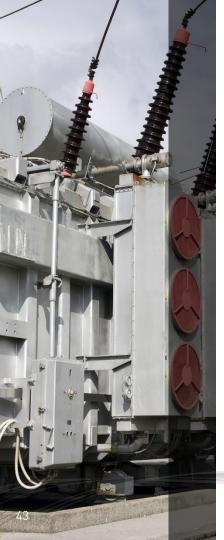
Excessive Water in Oil - Cool Down Period of Thermal Transient



- Most susceptible in transformers that
 - are wetter (> 1.5% in paper)
 - temperature cycle
 - temperature cycle quickly and to great extremes
 - operate at lower temperatures

Continuous Measurement in a Transformer

- Water content is not static but forever changing based on a number of conditions...
- Dictates the need for a continuous measurement



The dielectric strength of a insulating liquid correlates well to the relative saturation as opposed to the concentration level in ppm

Tests to assess the condition of the paper and pressboard insulation

©2024 Doble Engineering. All Rights Reserved

oble

Insulating Materials

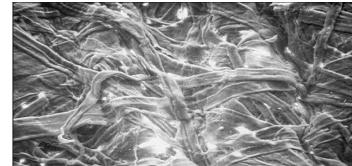
- Principal Insulating Components
 - Paper
 - Mineral Oil
- Aging Factors
 - Heat
 - Water
 - Oxygen

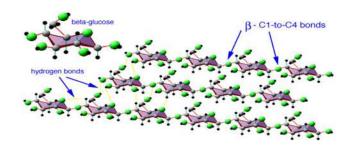
- Control Factors to Reduce Aging
- Influence Paper and Oil differently
- Paper more critical component
- Oil easily replaced

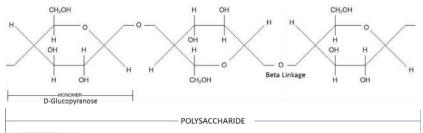
Cellulose

- Manufacturer's design life at nameplate rating about 20 years, many transformers >30 years old
- Cellulose
 - Availability and price
 - Retains insulating properties when deteriorated
 - Formability
- Typical Life 40 + years
 - If sealed units operated at or below nameplate ratings

Causes of aging of Cellulose by priority

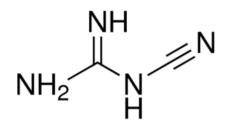

- High temperature
- Water
- Oxygen
- Copper catalyst, contaminants





Cellulose – Chemical Structure

- Average chain length: 1000 to 1300 units
- Aging leads to shorter cellulose chains



Aging Characteristics-Paper

Thermally Unstable

- Every 6-8°C rise, half the life
- Arrhenius-type kinetics
 - K_o=Ae^{B/T}
- Thermally upgraded (TU) more stable than Kraft paper

Temperatu re °C	Estimated Life to DP 200, TU Kraft (Years)	Estimated Life to DP 200, Kraft (Years)	
40	110,838	22,918	
60	6,229	1,291	
80	485	101	
90	151	31	
100	50	10	
110	17	3.6	
140	1	0.2	
180	0.04	0.01	

Aging Characteristics: Paper

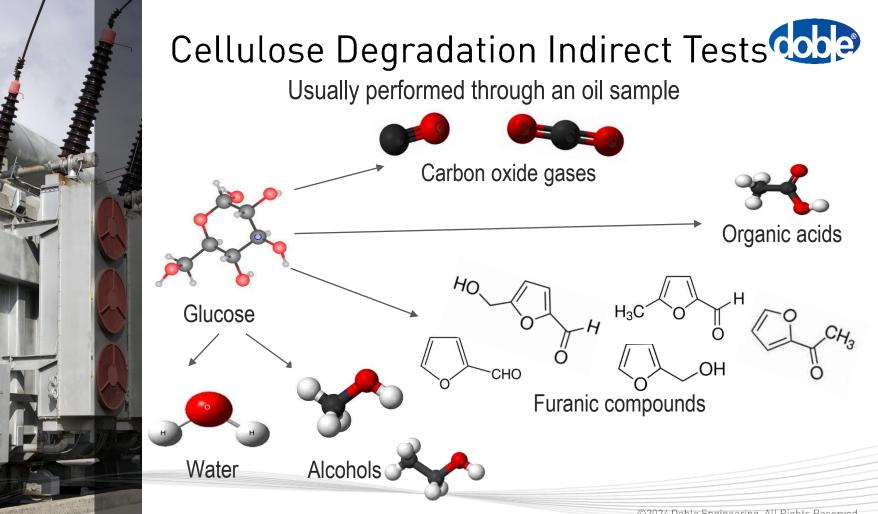


Water

- Significant effect
- Rate of deterioration α water content
 - 0.5% to 1.0%: Half life
- Thermally Upgraded Kraft more stable than Kraft

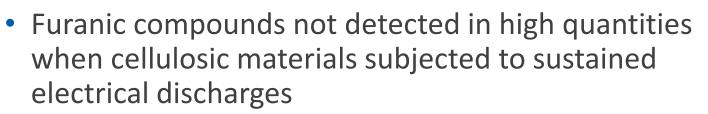
Oxygen

- Oxidatively stable
- 2.5:1 High O₂:Low O₂
- Preservation system
- Thermally Upgraded Kraft more stable than Kraft


Aging Of Materials

- Ambient temperature -influences operating temperature
- Transformer physical location (ventilation)
- Loading, pump operation, cooling design
- Inherent stability of materials
- Position/location within unit
- Presence of incipient-fault condition
- Factors not uniform over time

^{©2024} Doble Engineering, All Rights Reserved.


Partition Coefficients

- Partitioning between paper where furanic compounds are formed and oil
- Temperature
- Wet paper reduces partitioning to the oil
- Oil Quality (as oil degrades, has more polar compounds and increase partitioning of furanic compounds into the oil)
- Generation rate may be based on quantity of paper in transformer and thermal upgrading

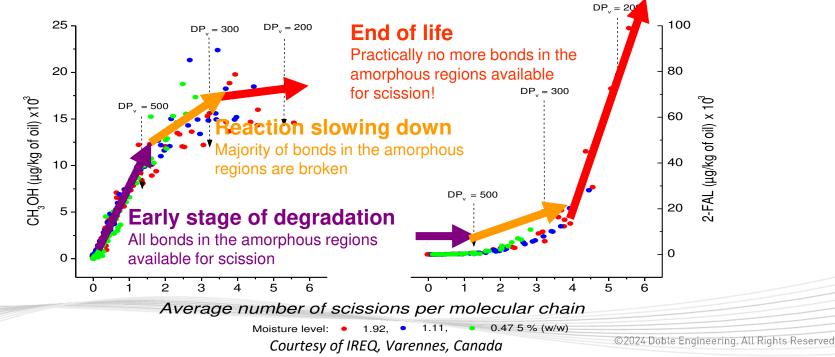
Effects of Electrical Discharge

- Cellulosic insulation severely damaged locally
- Carbon monoxide produced in proportion to amount of paper involved
- Theory: Electrical discharges produce very high temperatures (>1200°C)
 - Furanic compounds are generated
 - But immediately degraded due to temperature

Precautions

- Kraft paper in open conservator usually provides the best trending - higher amounts of furanic compounds formed
- Hard to tell if high concentrations are from small amount of insulation at high temp. or larger mass at lower temp.
- Processing transformer oil will alter concentrations sample before and after (a few months) processing to re-establish baseline

Alcohol Detection



- Methanol and Ethanol
- Drawbacks about 2-furfural
 - TU-paper...Very low concentrations detected
 - Standard Kraft paper:
 - Amount of 2-furural influenced by the water-in-paper content

Laboratory Aging

More realistic model marker Standard Kraft paper specimens aged at different moisture-temperature conditions (60 to $120^{\circ}C - 0,47$ to 1.92% H₂O (w/w), DP_{v,o} = 1168)

54

Comparison of Methanol and Furanic Compounds

- Based on laboratory experiments
 - Methanol might be more reliable than 2-furfural
 - Detected for regular Kraft and TU Kraft papers
 - Not influenced by the amount of moisture in paper
 - Sensitive at the early stage of cellulose degradation
 - Correction to 20°C is required
- For testing electric apparatus
 - More information to compare apparatus and pinpoint problems (Asset Management)
 - More information for refurbishment decision
 - Will suffer the fate of furanic compounds when subjected to oil processing
 - Must take sample in syringe in order not to lose volatile alcohols

Reduction of Aging

- Keep sealed and dry check seals and gaskets, nitrogen bottle, nitrogen pressure
- Conversion of open conservators in some cases
- Operate at cooler temperature
- Valves in correct position, cleaning coolers, adequate ventilation
- Locate blocked coolers by infrared thermography

Case Studies – Paper Assessment

Very High Furanic Compounds and Carbon Oxides

Transformer Nameplate	Details
Manufacturer	Unknown
Apparatus Type	Grounding transformer, core form
MVA Rating	11.5
kV Rating	33
Preservation System	Nitrogen blanketed
Oil volume	Unknown
Paper Type	Kraft
Loading	Heavy in cyclic periods
Year Manufactured	Around 1944, about 50 years of service
Condition	Taken out of service before failure, was seen steaming in a rain storm, temperature gauged pegged at over 200°C

Very High Furanic Compounds and Carbon <u>Oxides</u>

Dissolved gases-in-oil	ppm
Hydrogen	1,980
Oxygen	unknown
Nitrogen	unknown
Methane	318
Carbon Monoxide	2,990
Ethane	98
Carbon Dioxide	58,300
Ethylene	42
Acetylene	0

Furanic Compound	ug/L	
2-furfural	35,124	

- Grounding transformer
- Connected to sub-transmission feeder with line capacitors
- High side fuses blown causing overloading during certain switching functions due to imbalances in current of each of the three phases
- Probably occurring several days a week for at least 2 years

Elevated Ethanol

Transformer Nameplate	Details
Manufacturer	Magnetek
Apparatus Type	Transformer, core form
MVA Rating	22.4
kV Rating	138
Preservation System	Nitrogen blanketed
Oil volume	4050 gallons
Paper Type	Thermally upgraded
Loading	unknown
Year Manufactured	1986
Condition	Did not fail - Tested because oil quality degraded very quickly in 2 years

Elevated Ethanol

Dissolved gases-in-oil	ppm	Furanic Compound	ug/L	Alcohols Methanol	ppb 200
Hydrogen	139	5-HMF	< LD	Ethanol	1,313
Oxygen	3,270	FOL	< LD		
Nitrogen	36,800	2-FAL	255		
Methane	123	AF	29		
Carbon Monoxide	825	MF	< LD		
Ethane	104				
Carbon Dioxide	8,060	 Ethanol suggests high temperature overheating of cellulose > 300°C, other tests do not 			
Ethylene	30				
Acetylene	0				

Thank you!

