

Catastrophic Failure of ASEA Type IMBE-170 A4 Current Transformer

Hugo Simard, Rio Tinto
Jordan Beaudoin, Rio Tinto
Long Pong, Doble

**92nd International Conference
of Doble Clients**

© Doble Engineering

Rio Tinto

CT Information

3 x single phase CT in 161kV
substation feeding industrial load
with harmonic filter

ASEA

Made in 1988 by Sweden

Type: IMBE 170 A4

Rated voltage : 170 kV

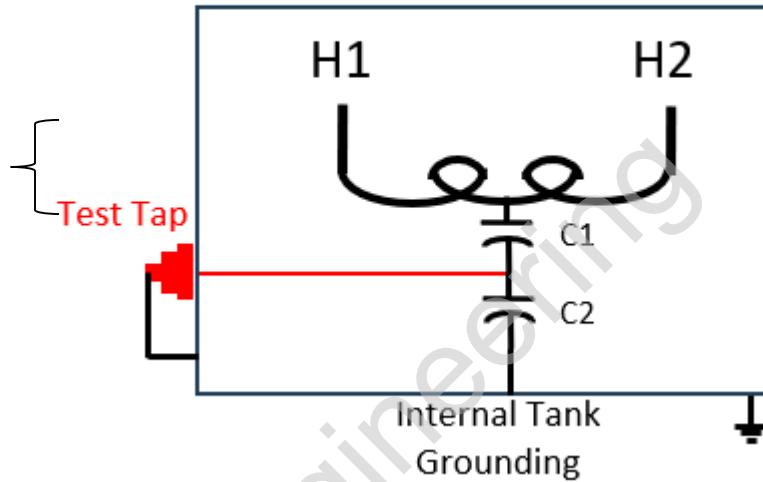
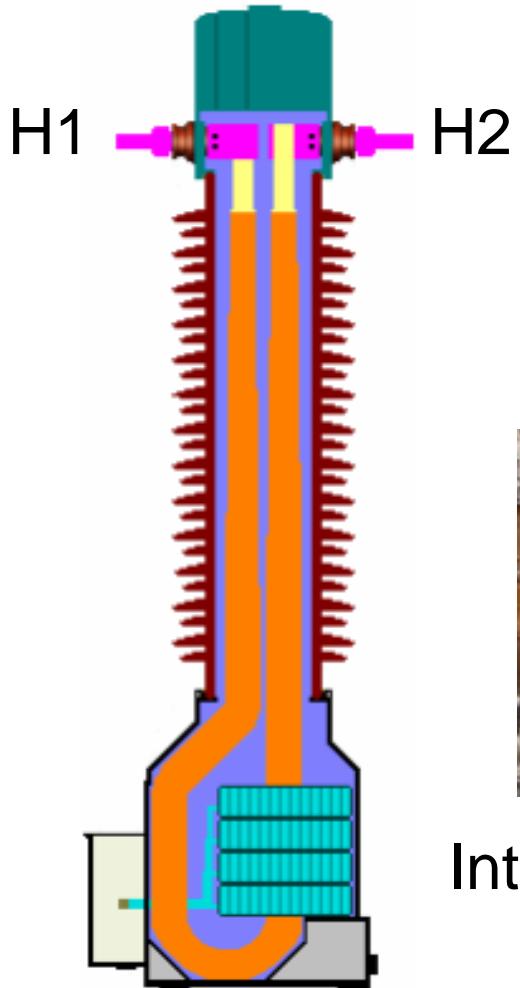
Standard : CAN3-C13-M83

4 secondary windings

Shed porcelain insulator

3 X SIMILARS UNITS

PHASE	SERIAL NUMBER
A	7739539
B	7739540
C (Failed)	7739541

Failure Information

- 'C' phase unit failed June 2023
- Bottom half of housing is gone
- Collateral damage up to 250' away & adjacent CT's
- Burnt secondary leads and test tap ground connection
- Harmonics filter removed from service weeks before failure

CT Design

Few
insulation
papers
between test
tap and
grounding
layers

Internal test tap connection

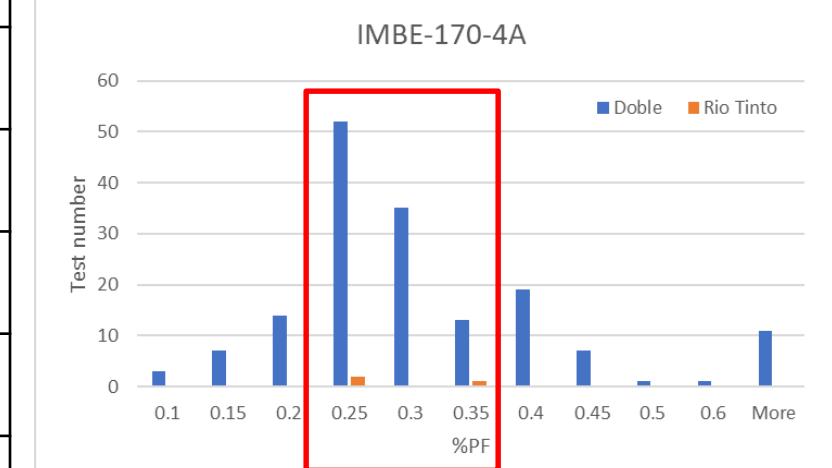
Internal ground connection

Maintenance History 3 Phase CT Bank

- Insulation measurement maintenance interval of 6 years, no oil sample performed
- Phase C (Failed), no significant data change was observed from 2006 to 2017 and the PF in the latest test (2017) was within acceptable limits before event
- C2 measurement had been abandoned because of complication in selecting a correct test voltage for field testers

Date	Power factor (%PF)			Capacitance (pF)		
	PH A	PH B	PH C	PH A	PH B	PH C
7/10/2023	0.28	0.22	Failed	848	1016	Failed
10/12/2017	0.32	0.26	0.25	846	1008	954
8/29/2012	0.29	0.23	0.22	829	999	943
9/20/2006	0.51	0.41	0.40	829	998	941

Setup					Results							Ratings		
#	H1	H2	Tap	Insulation System	Test kV	V [kV]	I [mA]	Loss [W]	TCF [#]	PF [%]	PF*TCF [%]	Capacitance [pF]	Ask FRANK™	Manual
1	HV			CH	10.000	10.001	3.597	0.091	1.00	0.252	0.252	954.2	G Good	Unrated
2				CH	2.000	2.000	3.598	0.093	1.00	0.257	0.257	954.6		Unrated
3	Red LV Lead	Red LV Lead	C1	10.000	10.001	not performed							U Unrated	Unrated
4		Red LV Lead	HV	C2	10.000	10.002	not performed							U Unrated

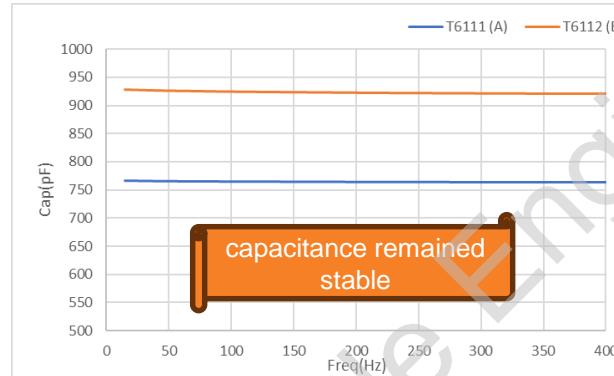
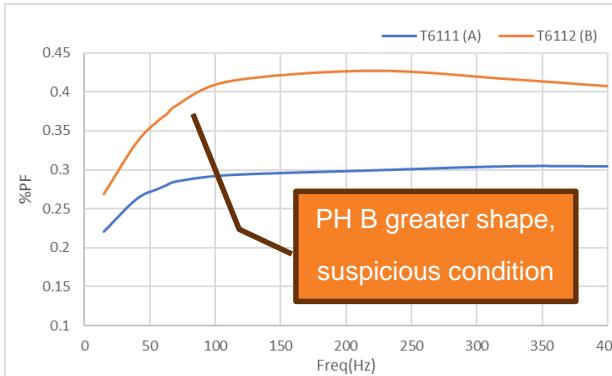


Failure Investigation – Two Other CT Phases – PF

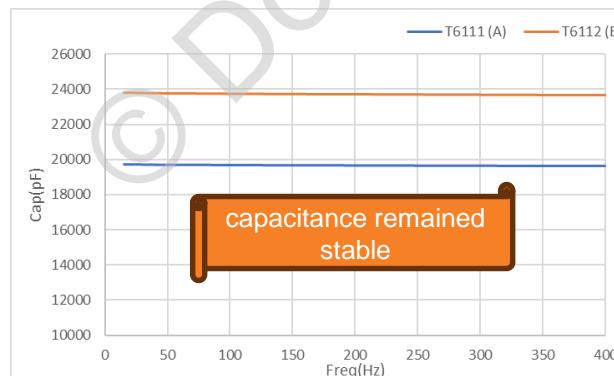
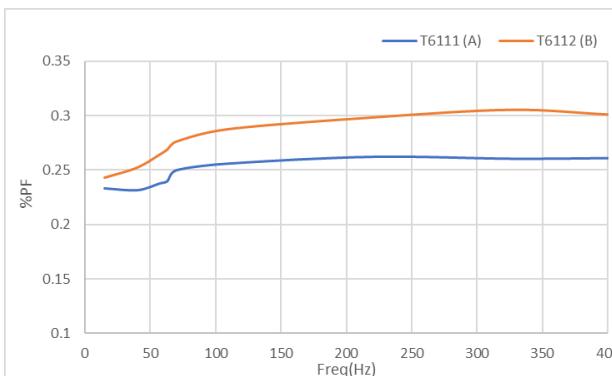
- Two sister units were used as benchmark for Root Cause Analysis
- Tested July 10th, 2023 – Overall, C1 & C2 insulation tests
 - PF < acceptable limit and statistically well below the data from Doble database (DTAWeb)
 - Capacitances variation from 5% to 18% suggesting some variation in the CT construction

	PH A (7/10/2023)		PH B (7/10/2023)		PH C (2017) before failure	
	%PF	Cap (pF)	%PF	Cap (pF)	%PF	Cap (pF)
Overall 10kV	0.220%	848.3	0.276%	1016.0	0.252%	954.2
Overall 2kV	0.226%	848.8	0.282%	1016.6	0.257%	954.6
C1, 10kV	0.193%	767.6	0.247%	931.4	-	not performed
C2, 2kV	0.213%	19670	0.243%	23744.0	-	-

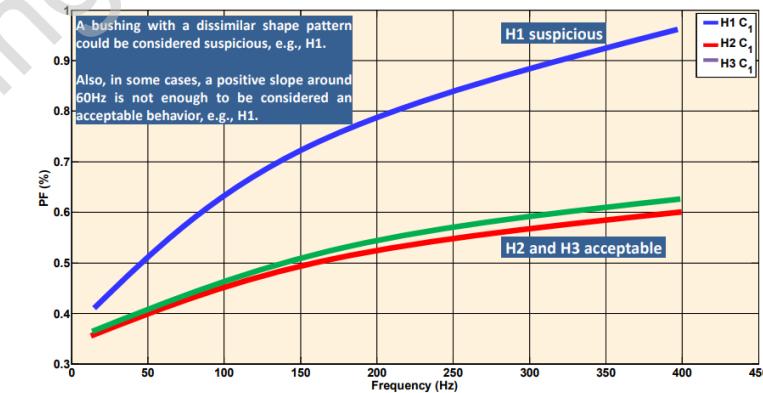
Doble database – DTA Web

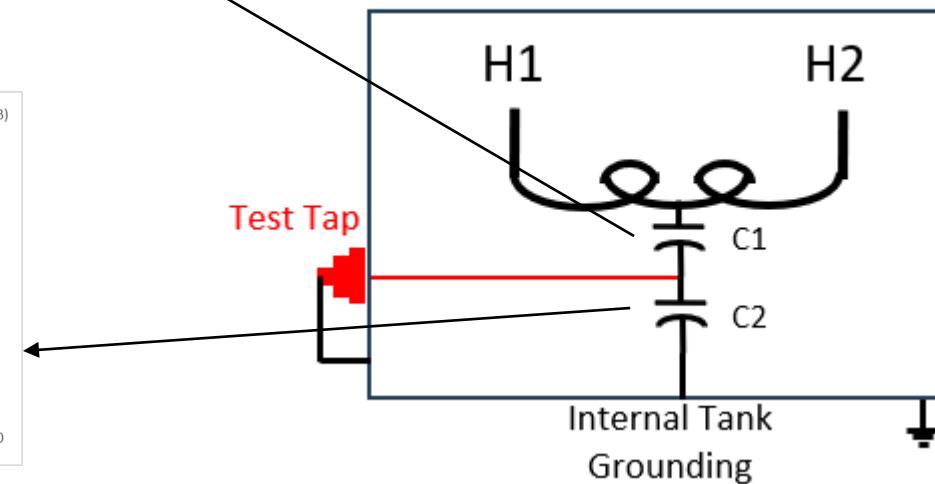



Failure Investigation – Two Other CT Phases - VFPF

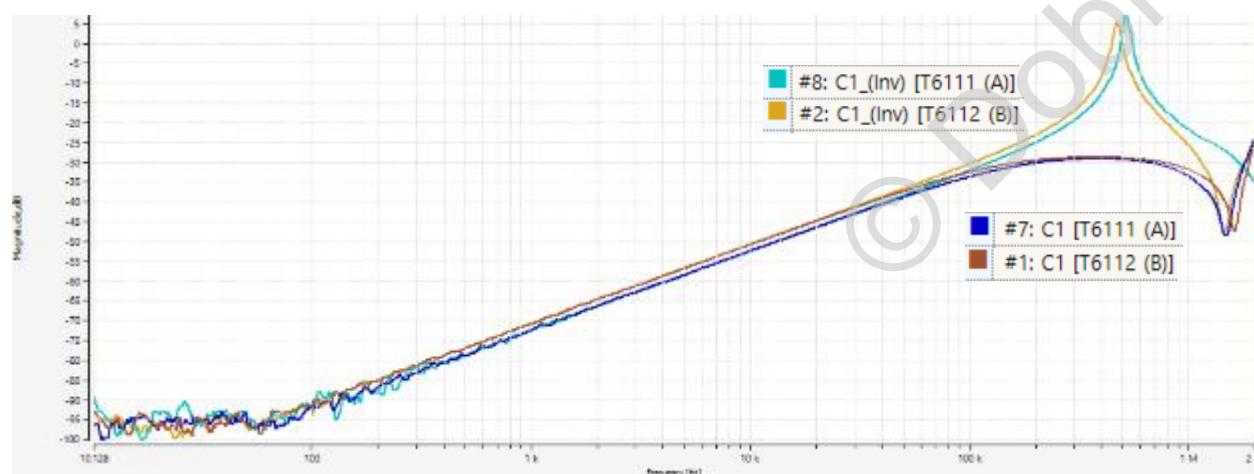



- VFPF, PF @2kV from frequency 15 to 400Hz
 - PF consistent with other standard 60Hz PF
 - Typical curve shape “fish-hook” for CT (blue)

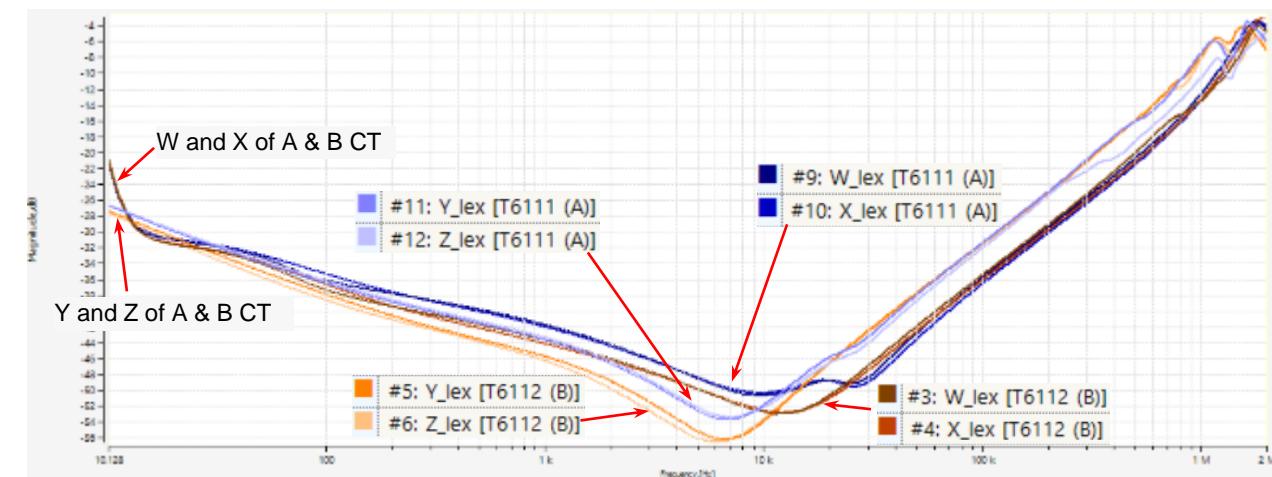

C1 main insulation


C2 test tap insulation

VFPF Applied to Bushings – Pattern 4


Roberto Borges, Fundamentals of Variable Frequency Power Factor (VFPF) Test and Analysis, Doble 2023

Failure Investigation – Two Other CT Phases - SFRA


- SFRA, 6 measurements, 10Hz to 2MHz
 - C1 traces different resonance frequency due to the dissimilarity of their capacitances
 - C1 (Inv) differently from the C1 trace resonance type, was probably caused by the CT magnetization reactance
 - Open-Circuit tests (lex) classified the four secondary windings into two groups: W&X and Y&Z, suggesting that the four windings grouped into two winding structures

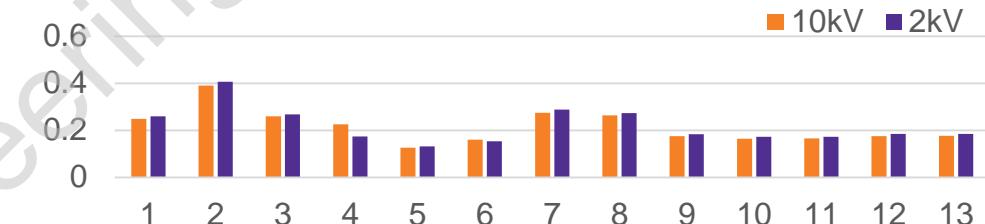
SFRA Test on C1

Custom Test Plan									
#	Test Identification	Preferred		Setup		Results		Traces	Test Completed
		Start Freq. [Hz]	Stop Freq. [Hz]	Red Lead	Black Lead	Shorted	Grounded		
1	C1	10	2 M	H1	S0L0	none	none	1	✓
2	C1_(Inv)	10	2 M	S0L0	H1	none	none	1	✓
3	W_lex	10	2 M	W	W	none	none	1	✓
4	X_lex	10	2 M	X1	X0	none	none	1	✓
5	Y_lex	10	2 M	Y1	Y0	none	none	1	✓
6	Z_lex	10	2 M	Z1	Z0	none	none	1	✓

SFRA Test on secondary winding (W, X, Y & Z)

Failure Investigation – Oil Result Two Other CT Phases

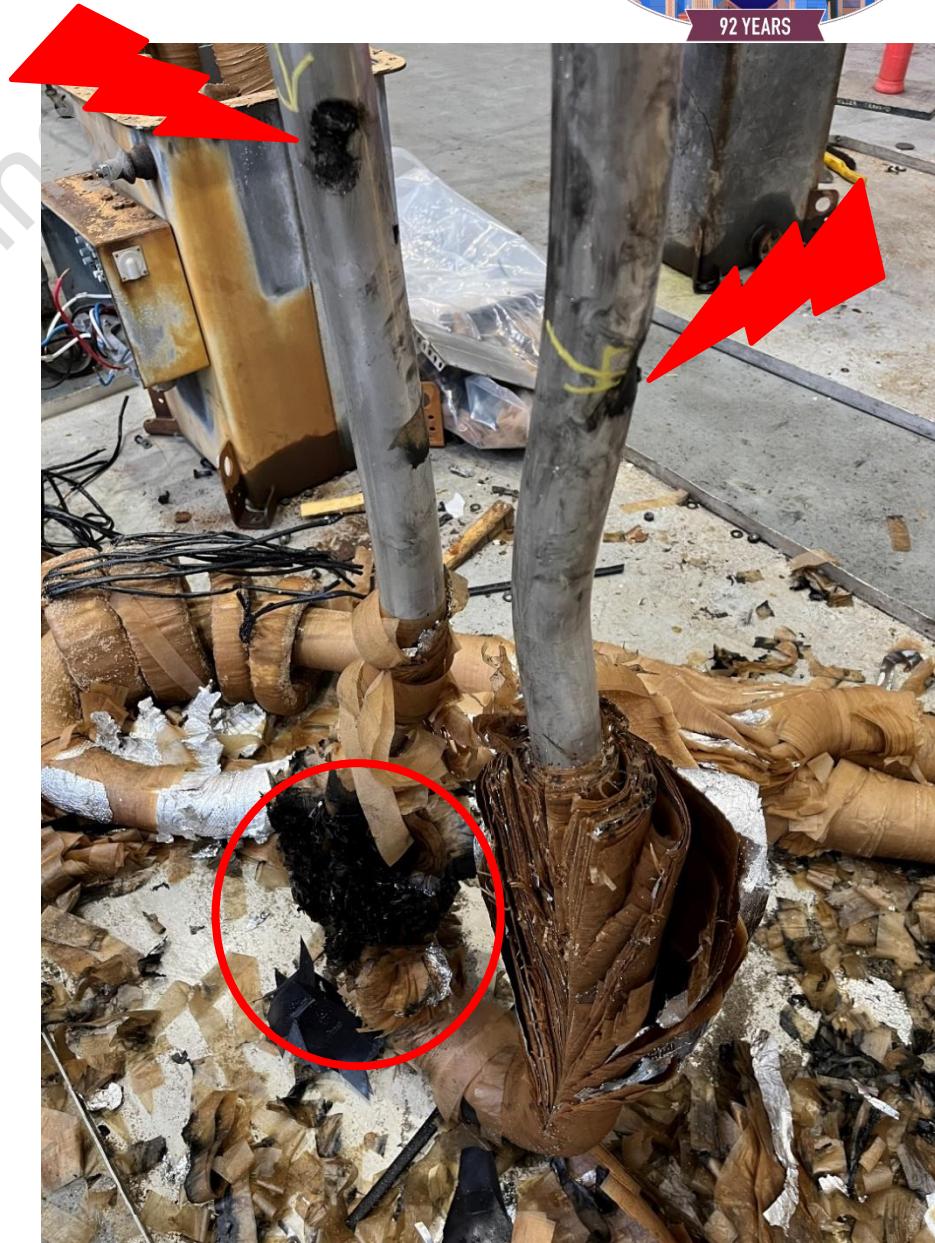
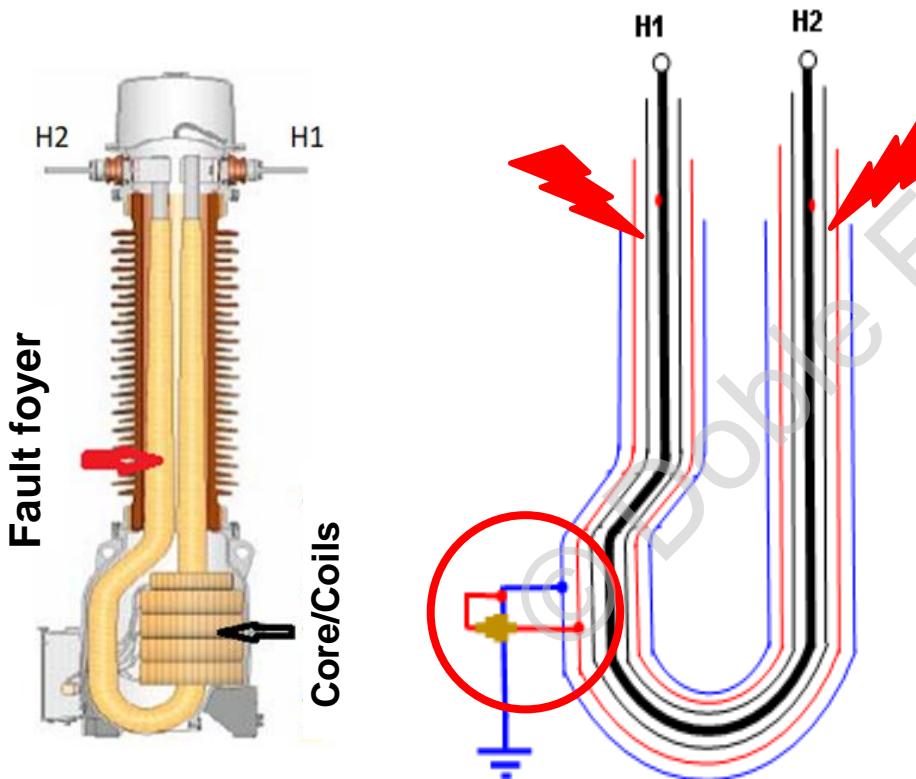
- Sampling 3 CT in the failed bank before investigation (room temp)
- Hydrogen (H₂) abnormal
- Various indicators confirm oil degradation:
 - kV dielectric strength
 - Power Factor are above the standards
 - H₂O content is relatively high
- PH B indicated more oil degradation; PF is the worst


	PH A	PH B	PH C (fired)
H ₂	1644	1010	18365
CH ₄	6	5	6268
C ₂ H ₆	1		1256
C ₂ H ₄	4	3	2740
C ₂ H ₂			1237
CO	180	157	860
CO ₂	605	610	4130
N ₂	71274	68964	43674
O ₂	9813	14080	7901
PPM H ₂ O	20	22	15
IFT	41.58	39.54	39.72
ACID	0.008	0.010	0.003
kV, D1816-2mm	25 kV	19 kV	33 kV
PF 25degC	0.085%	0.446%	1.226%
PF 100degC	2.2312%	11.764%	18.537%
Furans (2FAL)			1715

Failure Investigation – Oil Results & PF, 13 Similar CT

- Identified 13 CTs of the same type and proceeded with oil sampling and electrical insulation measurements
- Several CTs have relatively high hydrogen levels (H₂)
- Insulation measurements within limits for all CT
- All C2 were also good (not included in this table)

PF for all 13 CT



	712881	7867497	7739544	7128884	7128883	7128882	7739542	7739543	6691483	6691481	6691482	7364160	7364161
H ₂	666	460	528	915	1205	1183	507	396	805	1037	693	621	856
CH ₄	6	12	6	9	7	7	8	7	6	6	7	7	5
C ₂ H ₆	1	2	2	3	2	1	1	1	2	2	2	1	1
C ₂ H ₄		12		1	1	1	3	3			3	8	6
C ₂ H ₂													
CO	168	427	201	226	185	216	247	222	81	110	259	338	302
CO ₂	339	850	497	577	437	616	713	586	190	210	431	1110	1052
N ₂	44633	64617	75847	49267	45764	114220	69419	79014	56449	49625	61143	77167	77582
O ₂	2715	1409	1605	1814	1061	19135	1826	1936	2239	1252	1206	3892	4600
H ₂ O	7	6	7	7	6	6	9	11	10	9	7	9	10
Overall 10kV %	0.249	0.390	0.259	0.225	0.126	0.160	0.275	0.263	0.175	0.164	0.166	0.175	0.176
Overall 2kV %	0.259	0.407	0.268	0.174	0.131	0.154	0.288	0.273	0.183	0.173	0.172	0.184	0.184

Failure Investigation – Internal inspection

2025

92 YEARS

- Disassembly of the 3 CTs to detect clues about the root causes
- Layers of insulating paper were all cut at the same time to inspect internal ground and test tap measurements

Conclusion

- Catastrophic failure is a very concerning event impacting the safety, therefore maintenance and inspections are important
- Deterioration of the Overall insulation was not detected before explosion
- Remaining questions are harmonic level and C2 test
 - Whether an increase of harmonic level or resonance phenomena has affected the electrical insulation of the CT
 - Could an insulation test of C2 detected this defect that C1 test didn't?
- The two similar CTs in the same group showed signs of oil quality degradation, which could have also affected the one that exploded but all insulation measurement were good except VFPPF
- Other similar CTs all have a relatively high level of Hydrogen (H₂), which seems quite common in instrument transformers. This issue is still unexplained, but according to the insulation measurements, this high level of Hydrogen does not seem to affect the insulation quality presently
- Replacement program for all IMBE-170 transformers was implemented following the explosion. The priority is based on the insulation measurements, oil analyses and production impact customer
- Safety level in a substation must remain the priority of the company's asset management group.

Acknowledgements

The author would like to thank all team members
part of the root cause investigation from Rio Tinto:

- Jordan Beaudoin
- Andre-Anne Bouchard
- Martin Dube
- Martin Gamache
- Jonathan Lavoie
- Christophe Lavoie
- Jean-Francois Martel
- Marc-André Gagné

Other ad hoc member :

- Long Pong, Doble Engineering

Thank you.

© Doble Engineering

