ATRT-03 S2, ATRT-03A S2, and ATRT-03B S2 THREE-PHASE TRANSFORMER TURNS-RATIO METERS

USER'S MANUAL

TEL: (909) 923-9390 FAX: (909) 923-9391 February 2020 Revision 2.5

SAFETY SUMMARY

This manual applies to the ATRT-03 S2, ATRT-03A S2, and ATRT-3B S2 current transformer turns-ratio meters. The operating procedures are virtually the same for all three models, and any differences are clearly described where applicable.

FOLLOW EXACT OPERATING PROCEDURES

Any deviation from procedures described in this User's Manual may create one or more safety hazards, damage the ATRT-03/3A/03B S2, damage the test transformer, or cause errors in the test results. Vanguard Instruments Company, Inc. assumes no liability for unsafe or improper use of the ATRT-03/3A/03B S2. The following safety precautions must be observed during all phases of test setup, test hookups, testing, and test lead disconnection.

SAFETY WARNINGS AND CAUTIONS

The ATRT-03/3A/03B S2 shall be used only by **trained operators**. All transformers under test shall be **off-line** and **fully isolated**. Always ground the ATRT-03/3A/03B S2 to a substation ground before connecting the test cables to a transformer. Do not perform test procedures or service unless another person is also present who is capable of rendering aid and resuscitation.

SERVICE AND REPAIR

- Do not install substitute parts or perform any unauthorized modification to any ATRT-03/3A/03B S2 test unit.
- Repairs must be performed only by Vanguard Instruments Company factory personnel or by an authorized repair service provider. Unauthorized modifications can cause safety hazards and will void the manufacturer's warranty.

EQUIPMENT RATINGS

IP Rating: The enclosure for ATRT-03/3A/03B S2 has an IP rating of 32.

Pollution Degree: The ATRT-03/3A/03B S2 has a pollution rating of 2.

Operating Voltage: The ATRT-03/3A/03B S2 is rated for use with an operating voltage of 120V or 240V, autoranging ±10% of selected voltage.

Power Cord: The ATRT-03/3A/03B S2 is supplied with a 16 AWG, 16A power cord with a NEMA 5-15P plug. Replacement cable shall have the same or better rating and is available through the manufacturer.

VENTILATION REQUIREMENTS

The ATRT-03/3A/03B S2 must be operated with the enclosure lid open.

SAFETY SYMBOLS

Indicates that caution should be exercised

Indicates location of chassis ground terminal

CLEANING

To clean the ATRT-03/3A/03B S2:

- Disconnect all cables and turn the unit off.
- Use a soft, lint-free cloth to wipe all surfaces clean.
- Avoid getting moisture in openings and connectors.
- Don't use any cleaning products or compressed air.

TABLE OF CONTENTS

CONVENTIO	NS USED IN THIS DOCUMENT	5
1.0 INTRO	DDUCTION	6
1.1 Ge	neral Description and Features	6
1.2 Te	chnical Specifications	
1.2.1.	ATRT-03 S2 Technical Specifications	8
1.2.2.	ATRT-03A S2 Technical Specifications	9
1.2.3.	ATRT-03B S2 Technical Specifications	10
1.3 Co	ntrols and Indicators	11
2.0 PRE-1	EST SETUP	17
•	erating Voltages	
	O Screen Contrast Control	
	nter Paper Control	
	nter Paper	
2.5 Re	placing the Load Tap Changer Controller Fuses	18
	ATING PROCEDURES	
	nnection Diagrams	
	pical Front Panel Connections	
	pical Connections to a Load Tap Changer (LTC)	
	pical Connections to a Delta-Wye Transformer	
	ting the Test Voltage	
	ting the Date and Time	
	forming Tests	
3.4.1.	Entering Test Record Header Information	
3.4.2.	Testing a Single Phase Transformer	
3.4.3.	Testing a Dyn1 (12,000 V/208 V) Transformer	
3.4.4.	Testing a Three Phase Transformer Using Auto Detect Mode	
	orking With Test Records	
3.5.1.	Saving Test Results to a Test Record	
3.5.2.	Restoring a Test Record From Flash EEPROM	
3.5.3.	Restoring a Test Record From a USB Flash Drive	
3.5.4.	Copying Test Records to a USB Flash Drive	
3.5.5.	Printing or Displaying a Test Record	
3.5.6.	Printing a Test Record Directory (ATRT-03 S2 and ATRT-03A S2 Only)	
3.5.7.	Viewing a Test Record Directory on the LCD Screen (ATRT-03B S2 Only)	
3.5.8.	Erasing Test Records from the Flash EEPROM	
3.5.9.	Erasing Test Records from a USB Flash Drive	
3.6 Wo	orking With Test Plans	
3.6.1.	Performing a Test Using a Transformer Test Plan	
3.6.2.	Unloading a Test Plan From the Working Memory	
3.6.3.	Printing a Test Plan Directory (ATRT-03 S2 and ATRT-03A S2 Only)	
3.6.4.	Viewing a Test Plan Directory on the LCD Screen (ATRT-03B S2 Only)	
3.6.5.	Printing a Test Plan (ATRT-03 S2 and ATRT-03A S2 Only)	105

ATRT-03 S2, ATRT-03A S2, AND ATRT-03B S2 USER'S MANUAL

3.6.7. Copying a Test Plan to a USB Flash Drive	
	112
3.6.8. Erasing Test Plans	
4.0 DIAGNOSTICS, VERIFICATION, AND TROUBLESHOOTING	. 116
4.1 Performing an H and X Cable Diagnostic Test	.116
4.2 Performing a Verification Test	.118
5.0 UPGRADING FIRMWARE	.120
APPENDIX A – TRANSFORMER VECTOR GROUP CODES	.123
APPENDIX B – Common ANSI Transformer Descriptions	.124
APPENDIX C – CEI/IEC 60076-1 Transformer Descriptions	.132
APPENDIX D – Australian Std.2374 Transformer Descriptions	. 139

LIST OF TABLES

Table 1. ATRT-03 S2 Technical Specifications	8
Table 2. ATRT-03A S2 Technical Specifications	9
Table 3. ATRT-03B S2 Technical Specifications	10
Table 4. Functional Descriptions of ATRT-03 S2 Controls and Indicators	12
Table 5. Functional Descriptions of ATRT-03A S2 Controls and Indicators	14
Table 6. Functional Descriptions of ATRT-03B S2 Controls and Indicators	16
Table 7. Descriptions of Single Phase Test Results Elements (Column Format)	43
Table 8. Descriptions of Single Phase Test Results Elements (Detailed Format)	45
Table 9. Descriptions of Dyn1 Test Results Elements (Column Format)	53
Table 10. Descriptions of Dyn1 Test Results Elements (Detailed Format)	55

LIST OF FIGURES

Figure 1. ATRT-03 52 Controls and indicators	.
Figure 2. ATRT-03A S2 Controls and Indicators	13
Figure 3. ATRT-03B S2 Controls and Indicators	15
Figure 4. Typical Front Panel Cable Connections	20
Figure 5. Typical Connections to a Load Tap Changer (LTC)	21
Figure 6. Typical H & X Cable Connections to a Delta-Wye Transformer	22
Figure 7. Typical Connections to a Single Phase Transformer	
Figure 8. Typical Connections to a Single Phase Auto Transformer	
Figure 9. Typical Connections to a Type A Voltage Regulator	
Figure 10. Typical Connections to a Type B Voltage Regulator	
Figure 11. Typical Connections to a Donut Type (un-mounted) Current Transformer (CT)	
Figure 12. Typical Connections to a Multi-Tap Current Transformer	
Figure 13. Typical Connections to a Bushing Mount CT on a Single Phase Transformer	
Figure 14. Typical Connections to Bushing Mount CT's on Delta Transformer	
Figure 15. Typical Connections to Bushing Mount CT's on Wye Transformer	
Figure 17. Single Phase Test Results Printout - Column Format	43
Figure 18. Single Phase Test Results Printout - Detailed Format	
Figure 19. Dyn1 Test Results Printout - Column Format	
Figure 20. Dyn1 Test Results Printout - Detailed Format	
Figure 21. Typical USB Flash Drive (Thumb Drive) Test Record Directory Printout	
Figure 22. Typical Internal Flash EEPROM Test Record Directory Printout	
Figure 23. Test Plan Test Results Printout	
Figure 24. Sample Printout of a Test Plan from a USB Flash Drive	
Figure 25. Sample Printout of a Test Plan from Internal Memory	107

CONVENTIONS USED IN THIS DOCUMENT

This document uses the following conventions:

- The general term "ATRT" is used in this manual to refer to any of the ATRT-03 S2 models (ATRT-03 S2, ATRT-03A S2, and ATRT-3B S2).
- A key, switch, or knob on the ATRT is indicated as **[KEY]**, **[SWITCH]**, **[KNOB]**.
- Menu names are referenced as "MENU NAME"
- ATRT LCD screen output is shown as:

```
1. OPTION 1
2. OPTION 2
3. OPTION 3
4. OPTION 4
5. OPTION 5
```

• When instructions are provided, the menu item that should be selected is outlined with a rectangle as shown below (option 3 should be selected):

```
1. OPTION 1
2. OPTION 2
3. OPTION 3
4. OPTION 4
5. OPTION 5
```

Warning messages are indicated as:

Warning message

Important notes are indicated as:

Note details

NOTE

1.0 INTRODUCTION

1.1 General Description and Features

The ATRT-03 S2 line is Vanguard's third generation family of microprocessor-based, automatic, three phase, transformer turns-ratio testers. The ATRT-03 S2 line consists of the following three models:

- The ATRT-03 S2 is a line-powered, 100-240 Vac, 50/60 Hz turns-ratio tester featuring a built-in thermal printer.
- The ATRT-03A S2 can be powered either by an internal rechargeable lead acid battery, by 100-240 Vac, or by a 12 Vdc external source. The internal battery provides 3 hours of operational time. The ATRT-03A S2 also features a built-in thermal printer.
- The ATRT-03B S2 is a line-powered, 100-240 Vac, 50/60 Hz turns-ratio tester without a built-in thermal printer.

The general term "ATRT-03 S2" or "ATRT" is used in this manual to refer to any of the ATRT-03 S2 models. Any differences are clearly described where applicable.

The ATRT-03 S2 determines the transformer turns-ratio using the IEEE C57.12.90 measurement method. The ATRT-03 S2 outputs an excitation test voltage to the transformer's primary windings. The induced secondary voltage is sensed and the transformer turns-ratio is calculated. The unit can measure turns-ratios from 0.8 to 15,000. The transformer turns-ratio, excitation current, and phase-angle readings are displayed on the large back-lit LCD. The built-in transformer type detection feature allows the ATRT-03 S2 to detect and test 130 transformer types defined by ANSI, CEI/IEC and Australian standards.

The ATRT-03 S2 can be used as a stand-alone unit or can be computer-controlled. It can be operated locally using its alpha-numeric keypad and rotary switch. Information is displayed on a back-lit LCD screen (64 x 128 dot graphic) that is viewable in both bright sunlight and low-light levels. Test reports can be printed in the field on the unit's built-in 4.5-inch wide thermal printer (ATRT-03 S2 and ATRT-03A S2 only). The ATRT-03 S2 can store up to 112 test records and 128 test plans in Flash EEPROM. Test records or test plans can be stored or transferred to and from a PC via the available interfaces (RS-232C port, USB port, USB Flash drive port).

Transformer Test Voltage

To prevent an accidental wrong test-lead hook-up (e.g., when the operator reverses H and X leads), the ATRT-03 S2 outputs a low-level test voltage to verify the hook-up condition before applying the full test voltage to the transformer. Three test voltages (8 Vac, 40 Vac, 100 Vac) allow the ATRT-03 S2 to test CT's and PT's, as well as power transformers.

Auto-Detect Transformer Configuration

The ATRT-03 S2 can automatically detect 130 specific vector groups for different transformer types defined by ANSI, CEI/IEC, and Australian standards.

User Interface

The ATRT-03 S2 features a back-lit LCD screen (64 x 128 dot graphic) that is viewable in both bright sunlight and low-light levels. The test results screen displays the transformer turns-ratio, excitation current, phase angle, and percentage error. The unit is controlled via a rugged, 16-key, membrane keypad and a digital rotary switch.

Transformer Test Plans

The ATRT-03 S2 can store up to 128 transformer test plans in its Flash EEPROM. A test plan is comprised of the transformer nameplate voltages for each tap setting. The calculated turnsratio based on the nameplate voltages is compared with the measured turns-ratio. By recalling a test plan, a transformer can be quickly tested and turns-ratio Pass/Fail reports can be reviewed. Test plans can be created with the PC software and can be transferred to the ATRT-03 S2 via the available interfaces (RS-232C port, USB port, USB Flash drive port).

Internal Test Record Storage

Up to 112 test records can be stored in the ATRT-03 S2's Flash EEPROM memory. Each test record may contain up to 33 turns-ratio, excitation current, phase angle and name plate voltage readings. Test records can be recalled locally or transferred to a PC via the available interfaces (RS-232C port, USB port, USB Flash drive port).

USB Flash Drive Interface

A built-in USB Flash drive interface provides a convenient method for transferring test plans and test records to or from a USB Flash drive. The user can store up to 999 transformer test plans on a USB Flash drive. Test plans can be transferred from a PC to a USB Flash drive, and then a specific test plan on the USB Flash drive can be transferred to the ATRT-03 S2's internal Flash memory. Up to 999 test records from the field can be stored on a USB Flash drive. Test records stored in the ATRT-03 S2's internal memory can also be transferred to a USB Flash drive. The supplied PC software can then be used to view the test records stored on the USB Flash drive.

Computer Interface

In computer-controlled mode, the unit can be controlled via the RS-232C or USB port using the supplied PC software (Transformer Turns-Ratio Analyzer application provided with each ATRT-03 S2). This Windows® XP/Vista-based software can be used to run a test and to store test results on a PC. Test results can also be exported to Microsoft® Excel.

Transformer Load Tap Changer Control

Transformer tap positions can be changed remotely using the unit's built-in transformer load tap changer. This remote-controlled tap changer feature eliminates the need to manually change a transformer's step-up and step-down taps.

Built-in Thermal Printer (ATRT-03 S2 and ATRT-03A S2 only)

The ATRT-03 S2 and ATRT-03A S2 feature a built-in 4.5-inch wide thermal printer that can print test results. The printer and paper dispenser are mounted under the front panel for protection.

1.2 Technical Specifications

1.2.1. ATRT-03 S2 Technical Specifications

Table 1. ATRT-03 S2 Technical Specifications

TYPE	Portable, lightweight, automatic, 3-phase transformer turns-ratio meter
PHYSICAL SPECIFICATIONS	18"W x 7"H x 15"D (45.7 cm x 17.8 cm x 38.1 cm); Weight: 20 lbs (9.0 kg)
OPERATING VOLTAGE	100 – 240 Vac, 50/60 Hz
MEASUREMENT METHOD	ANSI/IEEE C57.12.90
TURNS-RATIO MEASURING RANGE	0.8 – 15,000
TURNS-RATIO ACCURACY	8 Vac: 0.8–1,000 (±0.08%), 1,001–4,000 (±0.1%), 4,001–15,000 (±0.25%) 40 Vac: 0.8–1,000 (±0.05%), 1,001–4,000 (±0.1%), 4,001–15,000 (±0.2%) 100 Vac: 0.8–1,000 (±0.05%), 1,001–4,000 (±0.1%), 4,001–15,000 (±0.2%)
TEST VOLTAGES	8 Vac @ 1Amp, 40 Vac @ 0.2 Amp, 100 Vac @ 0.1 Amp
EXCITATION CURRENT READING RANGE	0 – 1 Ampere; Accuracy: ±0.1 mA, ±2% of reading (±1 mA)
PHASE-ANGLE MEASUREMENT	0 – 360 Degrees; Accuracy: ±0.2 degree (±1 digit)
DISPLAY	Back-lit LCD screen (64 x 128 dot graphic display); Viewable in bright sunlight and low-light levels
PRINTER	Built-in 4.5-inch wide thermal printer
COMPUTER INTERFACES	One RS-232C port, One USB port
EXTERNAL DATA STORAGE	One USB Flash drive interface port; Up to 999 transformer test records can be stored on a USB Flash drive (not included).
PC SOFTWARE	Windows® XP/Vista-based Transformer Turns-Ratio Analyzer application is included with purchase price
INTERNAL TEST RECORD STORAGE	
INTERNAL TEST PLAN STORAGE	Can store 128 transformer test plans internally. Test plans can be transferred to the unit from the PC via the RS-232C/USB port or via the USB Flash drive interface
LOAD TAP CHANGER CONTACT	240 Vac, 2 Amps
SAFETY	Designed to meet UL 61010A-1 and CAN/CSA C22.2 No. 1010.1-92 standards
ENVIRONMENT	Operating: -10° to 50° C (15° to +122° F); Storage: -30° C to 70° C (-22° to +158° F)
HUMIDITY (MAX)	90% RH @ 40° C (104° F) non-condensing
ALTITUDE (MAX)	2000m (6562 ft) to fully safety specifications
CABLES	One 15-foot Single-phase set, One 15-foot 3-phase set, One 25-foot extension set, One safety ground, One USB, One RS-232C, One LTC cable, cable bag
WARRANTY	One year on parts and labor

The above specifications are valid at nominal operating voltage and at a temperature of 25°C (77°F). Specifications may change without prior notice.

1.2.2. ATRT-03A S2 Technical Specifications

Table 2. ATRT-03A S2 Technical Specifications

	·
TYPE	Portable, lightweight, automatic, 3-phase transformer turns-ratio meter
PHYSICAL SPECIFICATIONS	20"W x 7.5"H x 15.5"D (50 cm x 19 cm x 39.6 cm); Weight: 27 lbs (12 kg)
OPERATING VOLTAGE	100 – 240 Vac, 50/60 Hz
BATTERIES	Two lead acid batteries (12V, 2 AH) provide up to 3 hours of operation
MEASUREMENT METHOD	ANSI/IEEE C57.12.90
TURNS-RATIO MEASURING RANGE	0.8 – 15,000
TURNS-RATIO ACCURACY	8 Vac: 0.8–1,000 (±0.08%), 1,001–4,000 (±0.1%), 4,001–15,000 (±0.25%) 40 Vac: 0.8–1,000 (±0.05%), 1,001–4,000 (±0.1%), 4,001–15,000 (±0.2%) 100 Vac: 0.8–1,000 (±0.05%), 1,001–4,000 (±0.1%), 4,001–15,000 (±0.2%)
TEST VOLTAGES	8 Vac @ 350 mA, 40 Vac @ 70 mA, 100 Vac @ 20 mA
EXCITATION CURRENT READING RANGE	0 – 1 Ampere; Accuracy: ±0.1 mA, ±2% of reading (±1 mA)
PHASE-ANGLE MEASUREMENT	0 – 360 degrees; Accuracy: ±0.2 degree (±1 digit)
DISPLAY	Back-lit LCD screen (64 x 128 dot graphic display); Viewable in bright sunlight and low-light levels
PRINTER	Built-in 4.5-inch wide thermal printer
COMPUTER INTERFACES	One RS-232C port, One USB port
EXTERNAL DATA STORAGE	One USB Flash drive interface port; Up to 999 transformer test records can be stored on a USB Flash drive (not included).
PC SOFTWARE	Windows® XP/Vista-based Transformer Turns-Ratio Analyzer application is included with purchase price
INTERNAL TEST RECORD STORAGE	•
INTERNAL TEST PLAN STORAGE	The unit can store 128 transformer test plans. Test plans can be transferred to the unit from the PC via the RS-232C/USB port or via the USB Flash drive interface
LOAD TAP CHANGER CONTACT	240 Vac, 1 Amp
SAFETY	Designed to meet UL 61010A-1 and CAN/CSA C22.2 No. 1010.1-92 standards
ENVIRONMENT	Operating: -10° to 50° C (15° to +122° F); Storage: -30° C to 70° C (-22° to +158° F)
HUMIDITY (MAX)	90% RH @ 40° C (104° F) non-condensing
ALTITUDE (MAX)	2000m (6562 ft) to fully safety specifications
CABLES	One 15-foot single-phase set, One 15-foot 3-phase set, one 25-foot extension set, One safety ground, One USB, One RS-232, One LTC cable, cable bag
WARRANTY	One year on parts and labor

The above specifications are valid at nominal operating voltage and at a temperature of 25°C (77°F). Specifications may change without prior notice.

1.2.3. ATRT-03B S2 Technical Specifications

Table 3. ATRT-03B S2 Technical Specifications

TYPE	Portable, lightweight, automatic, 3-phase transformer turns-ratio meter
PHYSICAL SPECIFICATIONS	18"W x 7"H x 15"D (45.7 cm x 17.8 cm x 38.1 cm); Weight: 20 lbs (9.0 kg)
OPERATING VOLTAGE	100 – 240 Vac, 50/60 Hz
MEASUREMENT METHOD	ANSI/IEEE C57.12.90
TURNS-RATIO MEASURING RANGE	0.8 – 15,000
TURNS-RATIO ACCURACY	8 Vac: 0.8–1,000 (±0.08%), 1,001–4,000 (±0.1%), 4,001–15,000 (±0.25%) 40 Vac: 0.8–1,000 (±0.05%), 1,001–4,000 (±0.1%), 4,001–15,000 (±0.2%) 100 Vac: 0.8–1,000 (±0.05%), 1,001–4,000 (±0.1%), 4,001–15,000 (±0.2%)
TEST VOLTAGES	8 Vac @ 1Amp, 40 Vac @ 0.2 Amp, 100 Vac @ 0.1 Amp
EXCITATION CURRENT READING RANGE	0 – 1 Ampere; Accuracy: ±0.1 mA, ±2% of reading (±1 mA)
PHASE-ANGLE MEASUREMENT	0 – 360 Degrees; Accuracy: ±0.2 degree (±1 digit)
DISPLAY	Back-lit LCD screen (64 x 128 dot graphic display); Viewable in bright sunlight and low-light levels
COMPUTER INTERFACES	One RS-232C port, One USB port
EXTERNAL DATA STORAGE	One USB Flash drive interface port; Up to 999 transformer test records can be stored on a USB Flash drive (not included).
PC SOFTWARE	Windows® XP/Vista-based Transformer Turns-Ratio Analyzer application is included with purchase price
INTERNAL TEST RECORD STORAGE	Can store 112 transformer test records internally. Each record holds the test record header and up to 33 readings per phase. The readings include turns ratio readings, excitation current readings, and nameplate voltages.
INTERNAL TEST PLAN STORAGE	• · · · · · · · · · · · · · · · · · · ·
LOAD TAP CHANGER CONTACT	240 Vac, 2 Amps
SAFETY	Designed to meet UL 61010A-1 and CAN/CSA C22.2 No. 1010.1-92 standards
ENVIRONMENT	Operating: -10° to 50° C (15° to +122° F); Storage: -30° C to 70° C (-22° to +158° F)
HUMIDITY (MAX)	90% RH @ 40° C (104° F) non-condensing
ALTITUDE (MAX)	2000m (6562 ft) to fully safety specifications
CABLES	One 15-foot Single-phase set, One 15-foot 3-phase set, One 25-foot extension set, One safety ground, One USB, One RS-232C, One LTC cable, cable bag
WARRANTY	One year on parts and labor

The above specifications are valid at nominal operating voltage and at a temperature of 25°C (77°F). Specifications may change without prior notice.

1.3 Controls and Indicators

The ATRT-03 S2, ATRT-03A S2, and ATRT-03B S2 controls and indicators are shown in Figure 1, Figure 2, and Figure 3, respectively. A leader line with an index number points to each control and indicator, which is cross-referenced to a functional description in the corresponding table. The purpose of the controls and indicators may seem obvious, but users should familiarize themselves with them before using the ATRT. Accidental misuse of the controls will usually cause no serious harm. Users should also familiarize themselves with the safety summary information found on the front page of this User's Manual.

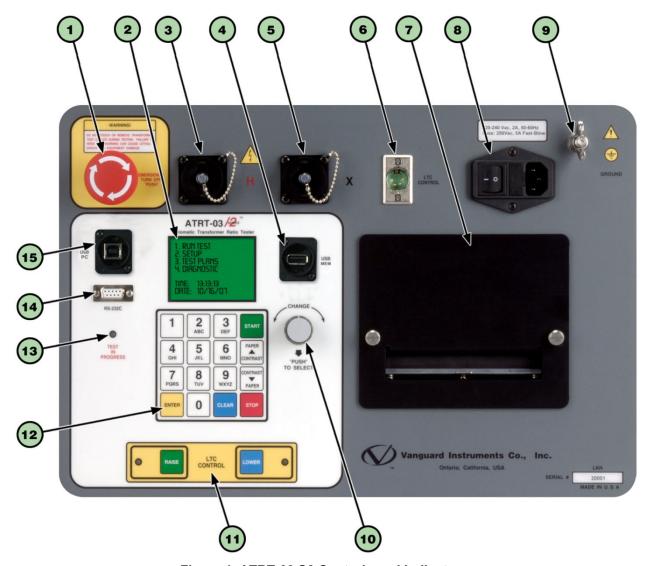


Figure 1. ATRT-03 S2 Controls and Indicators

Table 4. Functional Descriptions of ATRT-03 S2 Controls and Indicators

Item Number	Panel Markings	Functional Description
1	EMERGENCY TURN OFF "PUSH"	Emergency turn-off test voltage switch.
2		Back-lit LCD screen (62 x 128 dot graphic), viewable in bright sunlight and low-light levels.
3	Н	H voltage connector.
4	USB MEM	USB Flash drive interface port.
5	X	X voltage connector.
6	LTC CONTROL	Load Tap Changer controller connector.
7		4.5-inch wide thermal printer.
8	120-240 Vac, 2A, 50-60Hz Fuse: 250Vac, 5A Fast-Blow	Input power connector and fused power switch with third-wire safety ground.
9	GROUND	Ground stud for connecting to sub-station ground.
10	CHANGE "PUSH" TO SELECT	Control knob. You can scroll through menu items by turning the control knob. A highlighted menu item can be selected by pushing the control knob.
11	LTC CONTROL	Load Tap Changer control buttons.
12		Rugged alpha-numeric keypad.
13	TEST IN PROGRESS	This LED flashes in response to commands or when a test voltage is applied to the test transformer.
14	RS-232C	RS-232C PC interface connector.
15	USB PC	USB PC interface connector.

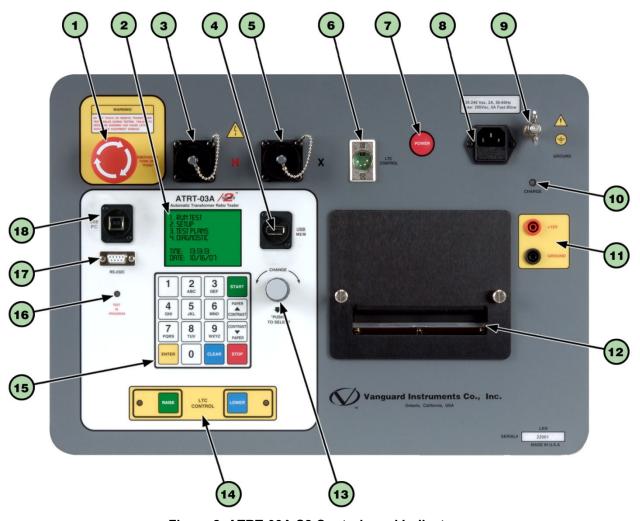


Figure 2. ATRT-03A S2 Controls and Indicators

Table 5. Functional Descriptions of ATRT-03A S2 Controls and Indicators

Item Number	Panel Markings	Functional Description
1	EMERGENCY TURN OFF "PUSH"	Emergency turn off test voltage switch.
2		Back-lit LCD screen (64 x 128 dot graphic), viewable in bright sunlight and low-light levels.
3	Н	H voltage connector.
4	USB MEM	USB Flash drive interface port.
5	X	X voltage connector
6	LTC CONTROL	Load Tap Changer controller connector.
7	POWER	Power switch
8	120-240 Vac, 2A, 50-60Hz Fuse: 250Vac, 5A Fast-Blow	Input power connector with third-wire safety ground.
9	GROUND	Ground stud for connecting to sub-station ground.
10	CHARGE	LED is lit when internal batteries are being charged.
11	+12V GROUND	12 VDC input connectors.
12		4.5-inch wide thermal printer.
13	CHANGE "PUSH" TO SELECT	Control knob. You can scroll through menu items by turning the control knob. A highlighted menu item can be selected by pushing the control knob.
14	LTC CONTROL	Load Tap Changer control buttons.
15		Rugged alpha-numeric keypad
16	TEST IN PROGRESS	This LED flashes in response to commands or when a test voltage is applied to the test transformer.
17	RS-232C	RS-232C PC interface connector.
18	USB PC	USB PC interface connector.

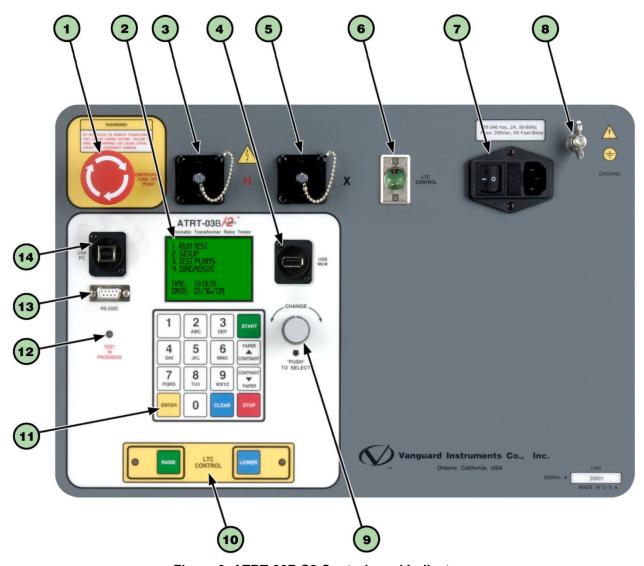


Figure 3. ATRT-03B S2 Controls and Indicators

Table 6. Functional Descriptions of ATRT-03B S2 Controls and Indicators

Item Number	Panel Markings	Functional Description
1	EMERGENCY TURN-OFF "PUSH"	Emergency turn off test voltage switch.
2		Back-lit LCD screen (64 x 128 dot graphic), viewable in bright sunlight and low-light levels.
3	Н	H voltage connector.
4	USB MEM	USB Flash drive interface port.
5	X	X voltage connector.
6	LTC CONTROL	Load Tap Changer controller connector.
7	120-240 Vac, 2A, 50-60 Hz Fuse: 250Vac, 5A Fast-Blow	Input power connector and fused power switch with third-wire safety ground.
8	GROUND	Ground stud for connecting to sub-station ground.
9	CHANGE "PUSH" TO SELECT	Control knob. You can scroll through menu items by turning the control knob. A highlighted menu item can be selected by pushing the control knob.
10	LTC CONTROL	Load Tap Changer control buttons.
11		Rugged alpha-numeric keypad.
12	TEST IN PROGRESS	This LED flashes in response to commands or when a test voltage is applied to the test transformer.
13	RS-232C	RS-232C PC interface connector.
14	USB PC	USB PC interface connector.

2.0 PRE-TEST SETUP

2.1 Operating Voltages

All three ATRT-03 S2 models can be powered by ac line voltage of 100-240 Vac, 50/60 Hz. For greater flexibility, the ATRT-03A S2 features an internal rechargeable lead acid battery and can also be powered by a 12 Vdc external source. The ATRT-03 S2 has built-in ground fault isolation detection and will only operate with voltages that are ground-fault isolated.

2.2 LCD Screen Contrast Control

To increase the LCD screen contrast, press and hold the **[PAPER** \land **Contrast]** key for two seconds. Release the button when the desired contrast level has been reached.

To decrease the LCD screen contrast, press and hold the **[PAPER** \vee **Contrast]** key for two seconds. Release the button when the desired contrast level has been reached.

2.3 Printer Paper Control

To advance the thermal printer paper, press and release the **[PAPER** \(\text{Contrast} \) key.

To retract the thermal printer paper, press and release the **[PAPER** \vee **Contrast]** key.

2.4 Printer Paper

The ATRT-03 S2 and ATRT-03A S2's built-in thermal printers use 4.5-inch wide thermal paper for printing test results. To maintain the highest print quality and to avoid paper jams, the use of thermal paper supplied by Vanguard Instruments Company is highly recommended. Additional paper can be ordered from the following sources:

Vanguard Instruments Co, Inc.

1520 S. Hellman Avenue Ontario, CA 91761 Tel: 909-923-9390

Fax: 909-923-9391

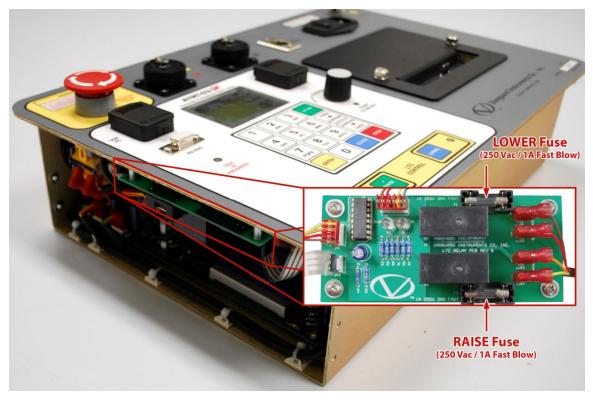
Part Number: VIC TP-4 paper

BG Instrument Co.

13607 E. Trent Avenue Spokane, WA 99216 Tel: 509-893-9881

Fax: 509-893-9803

Part Number: VIC TP-4 paper


2.5 Replacing the Load Tap Changer Controller Fuses

The ATRT-03 S2 features a built-in Load Tap Changer (LTC) controller that can raise or lower the LTC tap position from the front panel. The LTC controller circuit uses two 250 Vac/2A, NO, relay contacts to simulate the LTC Raise/Lower switches. Each relay contact is protected by a 1A/250 Vac fuse (5 X 20mm, fast acting). The fuse should be replaced with a Littlefuse P/N 217001 or equivalent. Follow the instructions below to replace the LTC controller fuses:

a. Remove the ATRT-03 S2 from its casing by removing the four screws from the bottom of the case:

b. The LTC control board is located under the left side of the front panel as shown in the figure below. Flip the unit over to easily access the LTC control board fuses.

- c. Replace any fuses as necessary with Littlefuse P/N 217001 or equivalent (250 Vac/1A, 5 X 20mm fast-acting type).
- d. Re-secure the unit in its casing with the screws that were removed in step a.

3.0 OPERATING PROCEDURES

The ATRT-03 S2 should always be grounded with the provided ground cable before connecting H and X cables. The transformer bushings should also be grounded before connecting test leads to the transformer. This will prevent inducing any voltages into the ATRT-03 S2. All transformer bus connections must be removed, and the transformer must be isolated before performing any tests. Typical transformer connection diagrams are illustrated in the sections below.

3.1 Connection Diagrams

3.1.1. Typical Front Panel Connections

Figure 4. Typical Front Panel Cable Connections

3.1.2. Typical Connections to a Load Tap Changer (LTC)

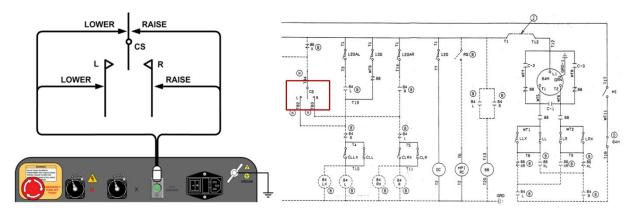


Figure 5. Typical Connections to a Load Tap Changer (LTC)

3.1.3. **Typical Connections to a Delta-Wye Transformer**

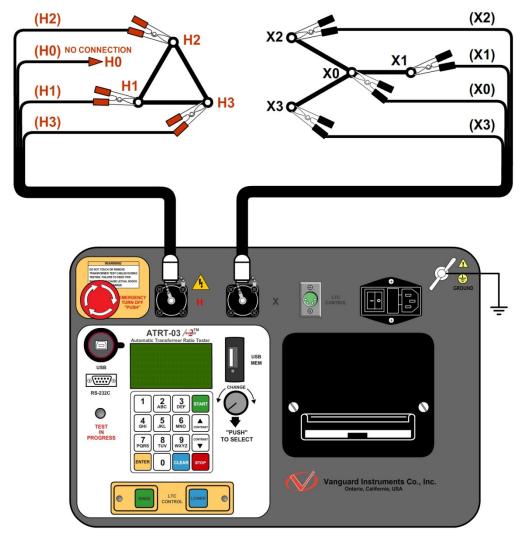


Figure 6. Typical H & X Cable Connections to a Delta-Wye Transformer

3.1.4. Typical Connections to a Single Phase Transformer

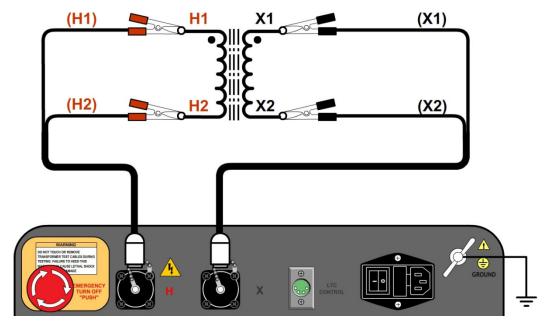


Figure 7. Typical Connections to a Single Phase Transformer

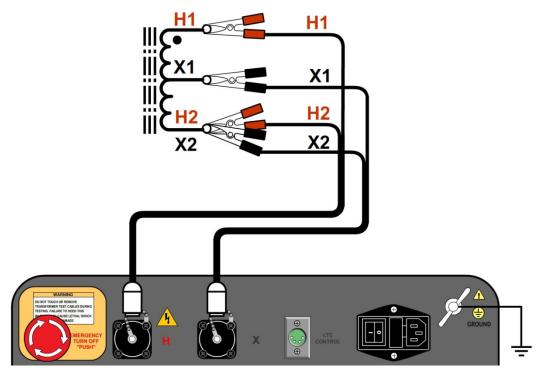


Figure 8. Typical Connections to a Single Phase Auto Transformer

3.1.5. Typical Connections to a Voltage Regulator

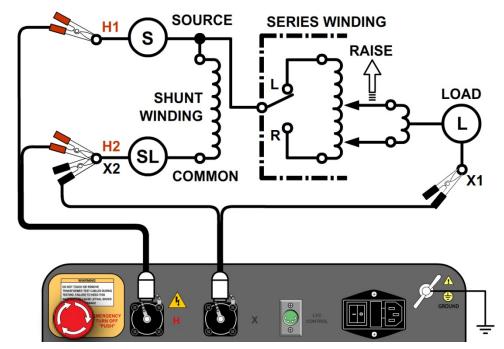


Figure 9. Typical Connections to a Type A Voltage Regulator

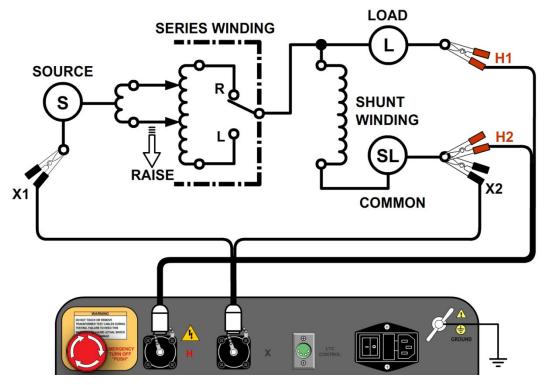


Figure 10. Typical Connections to a Type B Voltage Regulator

3.1.6. Typical Connections to a Donut Type (un-mounted) Current Transformer

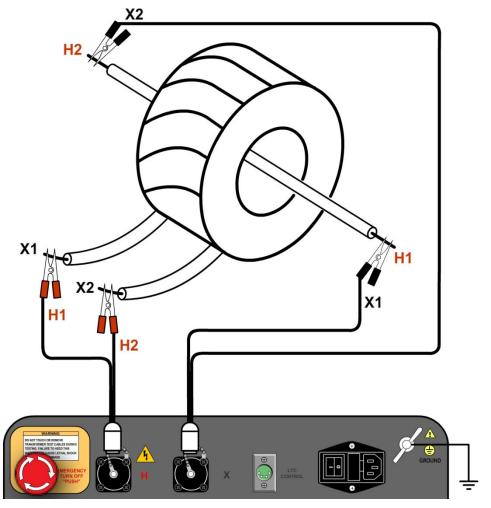


Figure 11. Typical Connections to a Donut Type (un-mounted) Current Transformer (CT)

The H and X test leads are reversed for the CT ratio test connections shown above.

NOTE

3.1.7. Typical Connections to a Multi-Tap Current Transformer

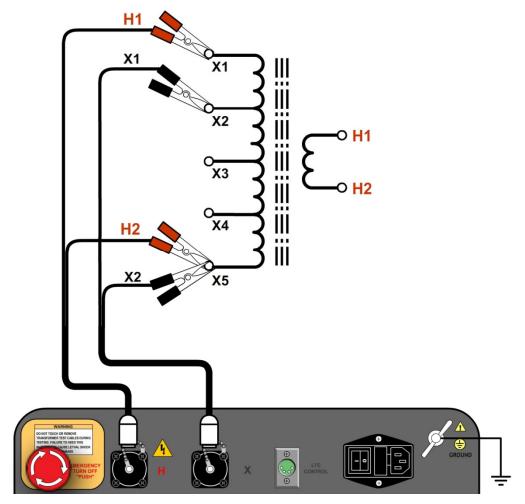


Figure 12. Typical Connections to a Multi-Tap Current Transformer

3.1.8. Typical Connections to a Bushing Mount CT on a Single Phase Transformer

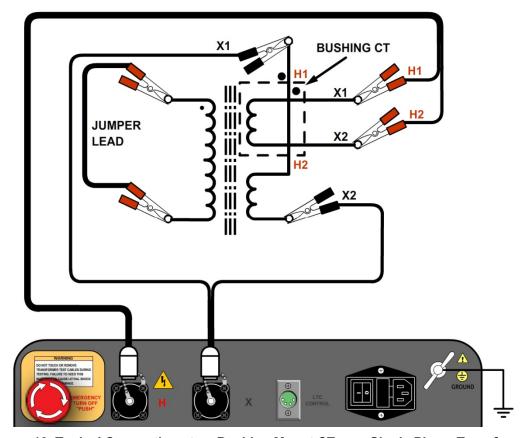
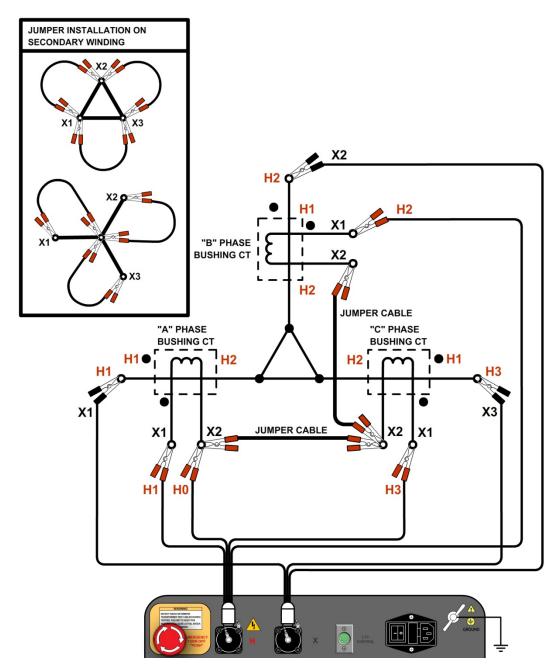
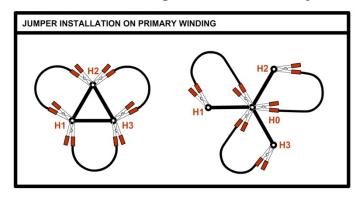


Figure 13. Typical Connections to a Bushing Mount CT on a Single Phase Transformer

3.1.9. Typical Connections to Bushing Mount CT's on Delta Transformer




Figure 14. Typical Connections to Bushing Mount CT's on Delta Transformer

The CT turns-ratio is obtained by performing a Ynd11 test.

NOTE

3.1.10. Typical Connections to Bushing Mount CT's on Wye Transformer

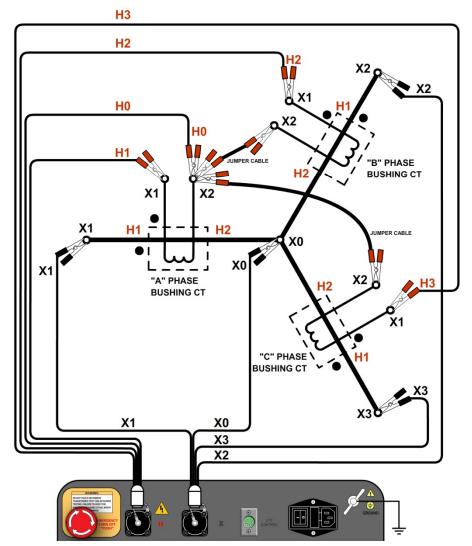


Figure 15. Typical Connections to Bushing Mount CT's on Wye Transformer

The CT turns-ratio is obtained by performing a Ynyn0 test.

NOTE

3.2 **Setting the Test Voltage**

The ATRT-03 S2 offers three test voltages, 8 Vac, 40 Vac, and 100 Vac. The unit always defaults to 40 Vac at power-on. The 8 Vac test voltage is for testing transformers which require low test voltages, such as metering Current Transformers (CT's). For metering CT's, higher voltages may drive the CT's into saturation, thus giving invalid results. The 40 Vac test voltage is recommended for testing power transformers. The 100 Vac test voltage is recommended for testing power transformers in noisy environments. Follow the steps below to set the test voltage:

a. Turn on the unit and start from the "START-UP" menu:

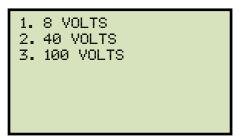
Press the [2] key (SETUP).

NOTE

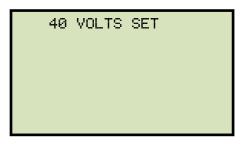
You can select menu options by typing the corresponding option number using the alpha-numeric keypad or by using the control knob. To select menu options using the control knob, turn the knob clockwise or counter-clockwise to highlight the next or previous menu item respectively. Once the desired menu option is highlighted, push the control knob to select it.

b. The following screen will be displayed:

1.	RECORD ID
2.	TEST VOLTAGE
3.	PRINT RECORD
4.	SAVE/RESTORE RECORD
5.	SET TIME


ATRT-03 S2 and ATRT-03A S2

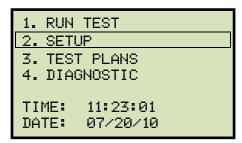
Press the [2] key (TEST VOLTAGE).


ATRT-03B S2

c. The following screen will be displayed:

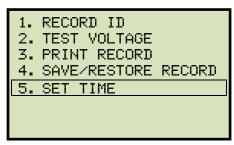
Select the desired test voltage by pressing the corresponding key on the numeric keypad ([1], [2], or [3]).

d. The voltage will be set and the following confirmation message will be displayed:



Press any key to return to the "START-UP" menu.

3.3 Setting the Date and Time


To set the date and time:

a. Start from the "START-UP" menu:

Press the [2] key (SETUP).

b. The following screen will be displayed:

Press the [5] key (SET TIME).

c. The following screen will be displayed:

Enter the date using the alpha-numeric keypad.

d. The following screen will be displayed:

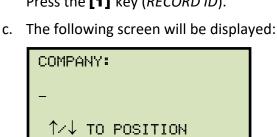
Enter the current time using the alpha-numeric keypad. When the complete time has been entered, you will be immediately returned to the "START-UP" menu.

3.4 **Performing Tests**

3.4.1. Entering Test Record Header Information

You can enter the test record header information before performing tests. The record header includes identifying information such as the company, station, circuit, manufacturer, etc. Once the header information has been set, it will apply to all subsequent test records. To enter the header information:

a. Start from the "START-UP" menu:

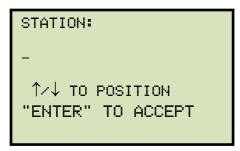

Press the [2] key (SETUP).

b. The following screen will be displayed:

ATRT-03 S2 and ATRT-03A S2

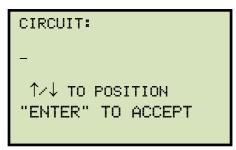
Press the [1] key (RECORD ID).

"ENTER" TO ACCEPT

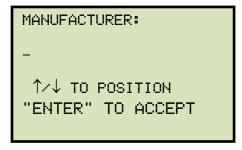

Type the company name using the alpha-numeric keypad.

RECORD ID 2. TEST VOLTAGE 3. DISPLAY RECORD 4. SAVE/RESTORE RECORD 5. SET TIME

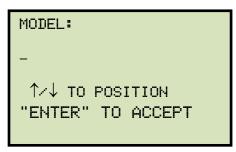
ATRT-03B S2


When pressing a key, the corresponding number on the key will be displayed first. Pressing the key again will display the first letter on the key. Pressing the key again will display the second letter on the key. For example, to type the letter "A", you must press the [2] key twice. To erase the character at the cursor position, press the [CLEAR] key. Press the [PAPER \cap Contrast] key to move to the next character. Press the [PAPER

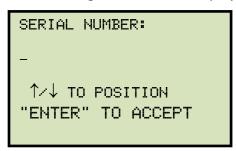
- ∨ **Contrast**] key to move to the previous character. Press the **[ENTER]** key when you are done typing the company name.
- d. The following screen will be displayed:


Type the station name using the alpha-numeric keypad and then press the **[ENTER]** key.

e. The following screen will be displayed:


Type the circuit information using the alpha-numeric keypad and then press the **[ENTER]** key.

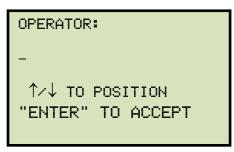
f. The following screen will be displayed:


Type the manufacturer name using the alpha-numeric keypad and then press the **[ENTER]** key.

g. The following screen will be displayed:


Type the transformer's model information using the alpha-numeric keypad and then press the **[ENTER]** key.

h. The following screen will be displayed:


Type the transformer's serial number using the alpha-numeric keypad and then press the **[ENTER]** key.

i. The following screen will be displayed:

Type the transformer's KVA rating using the alpha-numeric keypad and then press the **[ENTER]** key.

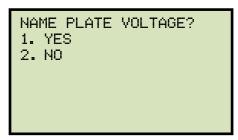
j. The following screen will be displayed:

Type the operator's name using the alpha-numeric keypad and then press the **[ENTER]** key. All header information will be saved, and you will be returned to the "START-UP" menu.

3.4.2. Testing a Single Phase Transformer

Follow the steps below to test a single phase transformer:

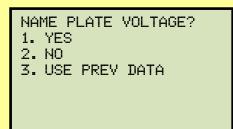
a. Start from the "START-UP" menu:


Press the [1] key (RUN TEST).

b. The following screen will be displayed:

XFMR CONFIG:
1. SINGLE PHASE
2. Dy
3. Yd
4. Dd
5. Yy
6. NEXT PAGE

Press the [1] key (SINGLE PHASE).


c. The following screen will be displayed:

If you had entered name plate voltages for a previous test, the following screen will be displayed instead of the above screen:

NOTE

Press the [3] key if you would like to use the name plate voltage values from the previous test performed. Continue to step d.

1. YES

Press the [1] key (YES) if you would like to enter the transformer name plate voltage values. The following screen will be displayed.

```
NAME PLATE VOLTAGE:
H : X
Ø :
```

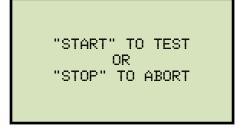
Type the H winding name plate voltage value using the numeric keypad. The screen will be updated as shown below:

```
NAME PLATE VOLTAGE:
H : X
2,400 :
```

Press the **[ENTER]** key. The screen will be updated as shown below:

```
NAME PLATE VOLTAGE:
H : X
2,400 : 0
```

Type the X winding name plate voltage value using the numeric keypad. The screen will be updated as shown below:

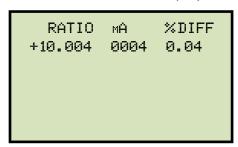

```
NAME PLATE VOLTAGE:
H : X
2,400 : 240
```

Press the [ENTER] key. Continue to step d.

2. NO

Press the [2] key (NO) if you do not want to enter the transformer name plate voltage values. Continue to step d.

d. The following screen will be displayed:

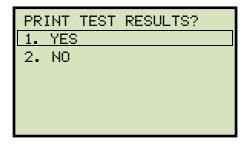


Press the [START] key to initiate the test.

e. The following screen will be displayed while the test is being performed:

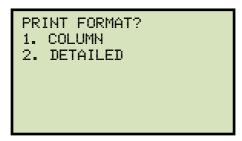
The test results will be displayed on the LCD screen when testing has finished:

The polarity is displayed as either a plus sign (+) for "in-phase" or a minus sign (-) for "out-of-phase". The value listed under "% DIFF" is the percentage error.

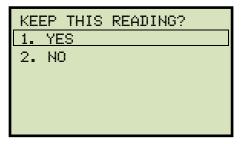

The percentage error (% DIFF) is calculated as the absolute value of: [(Calculated Ratio – Measured Ratio) / Calculated Ratio)] x 100

Press any key to continue.

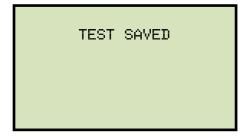
If using an ATRT-03 S2 or ATRT-03A S2, continue to step f.


If using an ATRT-03B S2, continue to step h.

f. The following screen will be displayed:


Press the [1] key (YES) to print the test results.

g. The following screen will be displayed:


Press the [1] key (COLUMN) to print a columnar report (see Figure 16) or press the [2] key (DETAILED) to print a detailed report (see Figure 17).

h. The following screen will be displayed:

Press the [1] key (YES) to save the reading.

i. The following screen will be displayed:

Press any key to continue.

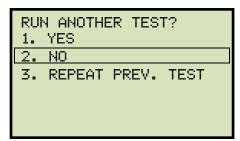
NOTE

The above screen will be displayed if there is currently no data in the unit's memory buffer. If a test was previously performed or a test record was restored from Flash EEPROM or from a Flash drive, the following screen will be displayed instead:

PREVIOUS DATA IN BUF

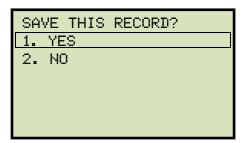
1. APPEND PREV. DATA

2. CLEAR PREV. DATA

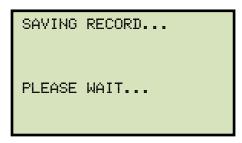

Press the [1] key (APPEND PREV. DATA) to append the data in the unit's working memory to the current test results, or press the [2] key (CLEAR PREV. DATA) to clear any previous data from the unit's memory buffer and only save the current test results.

The following screen will then be displayed:

TEST SAVED


Press any key to continue.

j. The following screen will be displayed:


Press the **[2]** key (*NO*).

k. The following screen will be displayed:

Press the [1] key (YES) to save the test record to the unit's Flash EEPROM.

I. The following screen will be displayed momentarily:

The following confirmation screen will then be displayed:

The unit will automatically assign the record number and will not over-write existing test records.

Press any key to return to the "START-UP" menu.

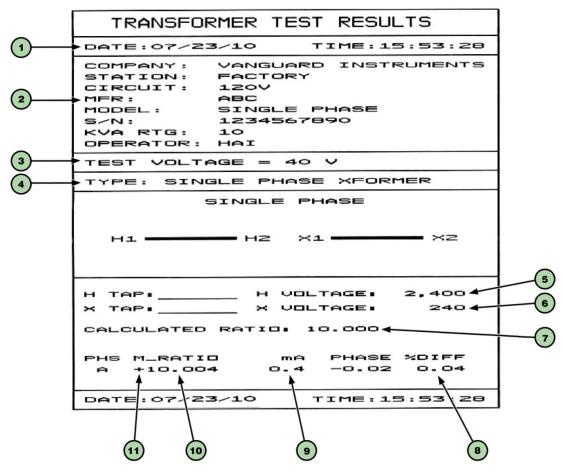


Figure 16. Single Phase Test Results Printout - Column Format (ATRT-03 S2 and ATRT-03A S2 only)

Table 7. Descriptions of Single Phase Test Results Elements (Column Format)

Item Number	Description
1	Test record date and time.
2	Test record header information (see section 3.4.1).
3	Test voltage.
4	Type of transformer under test.
5	H tap voltage.
6	X tap voltage.
7	Calculated ratio.
8	Percentage error between the calculated ratio and the measured ratio.
9	Excitation current.
10	Measured ratio.
11	Winding polarity.

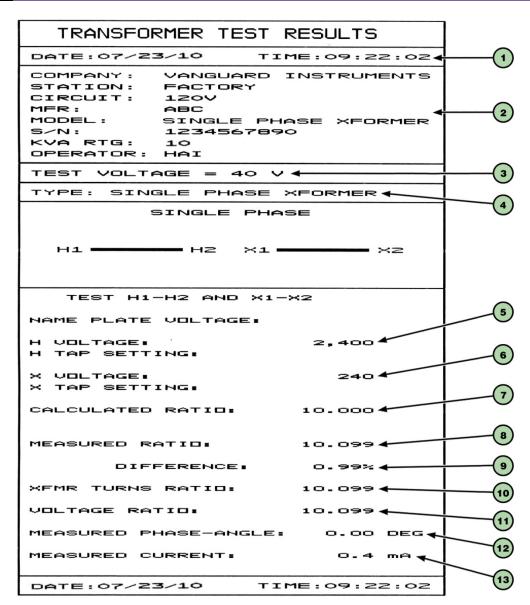


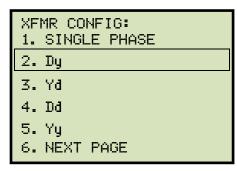
Figure 17. Single Phase Test Results Printout - Detailed Format

(ATRT-03 S2 and ATRT-03A S2 only)

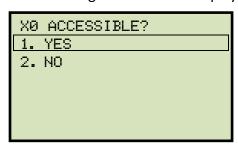
Table 8. Descriptions of Single Phase Test Results Elements (Detailed Format)

Item Number	Description
1	Test record date and time.
2	Test record header information (see section 3.4.1).
3	Test voltage.
4	Type of transformer under test.
5	H tap voltage.
6	X tap voltage.
7	Calculated ratio.
8	Measured ratio.
9	Percentage error between the calculated ratio and the measured ratio.
10	Measured transformer turns ratio.
11	Measured voltage ratio.
12	Winding phase angle.
13	Excitation current.

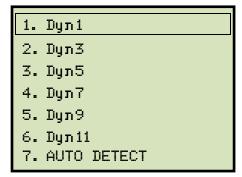
3.4.3. Testing a Dyn1 (12,000 V/208 V) Transformer


Follow the steps below to test a Dyn1 (12,000 V/208 V) transformer:

a. Start from the "START-UP" menu:


Press the [1] key (RUN TEST).

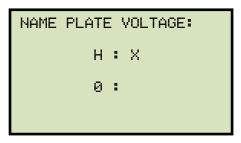
b. The following screen will be displayed:


Press the **[2]** key (*Dy*).

c. The following screen will be displayed:

Press the [1] key (YES).

d. The following screen will be displayed:


Press the **[1]** key (*Dyn1*).

e. The following screen will be displayed:

```
NAME PLATE VOLTAGE?
1. YES
2. NO
```

1. YES

Press the **[1]** key (*YES*) if you would like to enter the transformer name plate voltage values. The following screen will be displayed.

Type the H winding name plate voltage value using the numeric keypad. The screen will be updated as shown below:

```
NAME PLATE VOLTAGE:
H : X
2,400 :
```

Press the **[ENTER]** key. The screen will be updated as shown below:

NAME PLATE VOLTAGE: H : X 1,200 : 0

Type the X winding name plate voltage value using the numeric keypad. The screen will be updated as shown below:

NAME PLATE VOLTAGE:
H : X
1,200 : 208

Press the **[ENTER]** key. Continue to step f.

2. NO

Press the [2] key (NO) if you do not want to enter the transformer name plate voltage values. Continue to step f.

f. The following screen will be displayed:

"START" TO TEST THREE PHASE OR "STOP" TO ABORT

Press the **[START]** key to initiate the test.

g. The following screen will be displayed while the test is being performed:

The screen will be updated with the Phase A test results as shown:

```
TEST RESULTS:
RATIO MA %DIFF
A +100.04 0002 0.11

XFMR TYPE: Dyn1
```

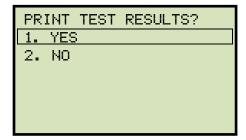
Testing will continue, and the screen will be updated with the Phase B test results as shown:

```
TEST RESULTS:
RATIO MA %DIFF
A +100.04 0002 0.11
B +100.05 0002 0.12

XFMR TYPE: Dyn1
```

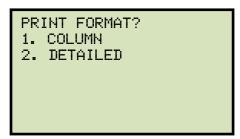
Finally, the screen will be updated with the Phase C test results as shown:

```
TEST RESULTS:
RATIO MA %DIFF
A +100.04 0002 0.11
B +100.05 0002 0.12
C +100.01 0002 0.09

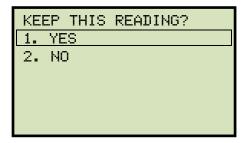

XFMR TYPE: Dyn1
```

Press any key to continue.

If using an ATRT-03 S2 or ATRT-03A S2, continue to step h.


If using an ATRT-03B S2, continue to step j.

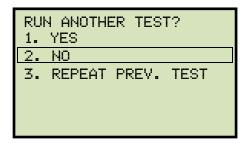
h. The following screen will be displayed:


Press the [1] key (YES) to print the test results.

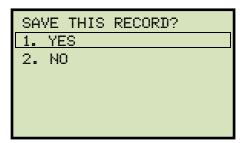
i. The following screen will be displayed:

Press the [1] key (COLUMN) to print a columnar report (see Figure 18) or press the [2] key (DETAILED) to print a detailed report (see Figure 19).

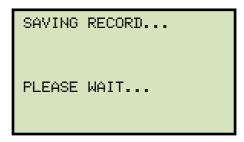
j. The following screen will be displayed:


Press the [1] key (YES) to save the reading.

k. The following screen will be displayed:


Press any key to continue.

I. The following screen will be displayed:


Press the **[2]** key (*NO*).

m. The following screen will be displayed:

Press the [1] key (YES) to save the test record to the unit's Flash EEPROM.

n. The following screen will be displayed momentarily:

The following confirmation screen will then be displayed:

Press any key to return to the "START-UP" menu.

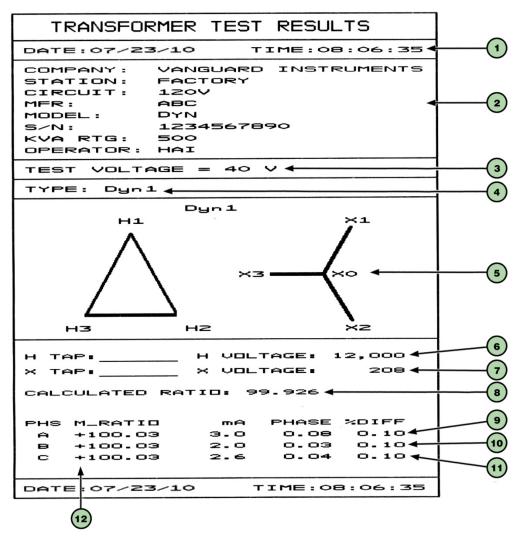


Figure 18. Dyn1 Test Results Printout - Column Format (ATRT-03 S2 and ATRT-03A S2 only)

Table 9. Descriptions of Dyn1 Test Results Elements (Column Format)

Item Number	Description
1	Test record date and time.
2	Test record header information (see section 3.4.1).
3	Test voltage.
4	Type of transformer under test.
5	Transformer configuration diagrams (H and X).
6	H tap voltage.
7	X tap voltage.
8	Calculated ratio.
9	Measured ratio, excitation current, phase angle, and percentage error for Phase A.
10	Measured ratio, excitation current, phase angle, and percentage error for Phase B.
11	Measured ratio, excitation current, phase angle, and percentage error for Phase C.
12	Winding polarity.

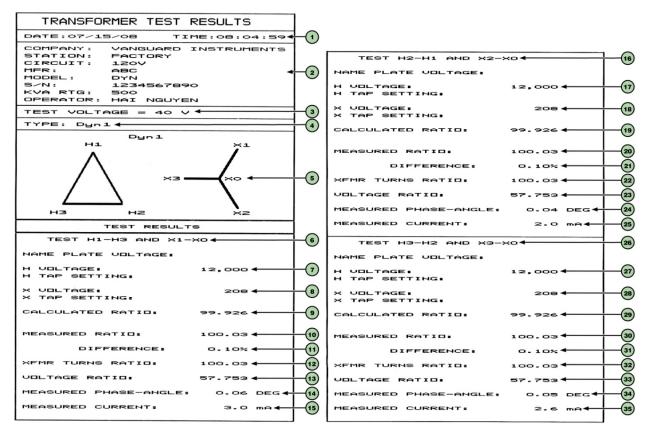


Figure 19. Dyn1 Test Results Printout - Detailed Format
(ATRT-03 S2 and ATRT-03 S2A only)

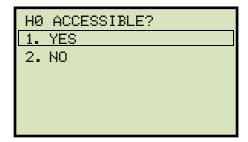
Table 10. Descriptions of Dyn1 Test Results Elements (Detailed Format)

Item Number	Description
1	Test record date and time.
2	Test record header information (see section 3.4.1).
3	Test voltage.
4	Type of transformer under test.
5	Transformer configuration diagrams.
6	Test H1-H3 and X1-X0 section heading.
7	H1-H3 tap voltage.
8	X1-X0 tap voltage.
9	H1-H3, X1-X0 calculated ratio.
10	H1-H3, X1-X0 measured ratio.
11	H1-H3, X1-X0 percentage error between calculated ratio and measured ratio.
12	H1-H3, X1-X0 transformer turns ratio.
13	H1-H3, X1-X0 voltage ratio.
14	H1-H3, X1-X0 measured phase angle.
15	H1-H3, X1-X0 measured excitation current.
16	Test H2-H1 and X2-X0 section heading
17	H2-H1 tap voltage.
18	X2-X0 tap voltage.
19	H2-H1, X2-X0 calculated ratio.
20	H2-H1, X2-X0 measured ratio.
21	H2-H1, X2-X0 percentage error between calculated ratio and measured ratio.
22	H2-H1, X2-X0 transformer turns ratio.
23	H2-H1, X2-X0 voltage ratio.
24	H2-H1, X2-X0 measured phase angle.
25	H2-H1, X2-X0 measured excitation current.
26	Test H3-H2 and X3-X0 section heading.
27	H3-H2 tap voltage.
28	X3-X0 tap voltage.
29	H3-H2, X3-X0 calculated ratio.
30	H3-H2, X3-X0 measured ratio.
31	H3-H2, X3-X0 percentage error between calculated ratio and measured ratio.
32	H3-H2, X3-X0 transformer turns ratio.
33	H3-H2, X3-X0 voltage ratio.
34	H3-H2, X3-X0 measured phase angle.
35	H3-H2, X3-X0 measured excitation current.

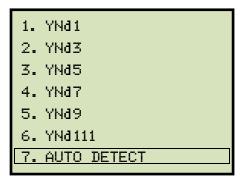
3.4.4. Testing a Three Phase Transformer Using Auto Detect Mode

The ATRT-03 S2 provides a convenient Auto Detect mode that can automatically detect 130 specific vector groups for different transformer types defined by ANSI, CEI/IEC, and Australian standards. The transformer configurations supported are listed in Appendix A. The ATRT-03 S2 can detect the vector diagrams for Delta-Delta, Wye-Wye, Delta-Wye, and Wye-Delta transformer types. Follow the steps below to test a three phase transformer using auto detect mode:

a. Start from the "START-UP" menu:


Press the [1] key (RUN TEST).

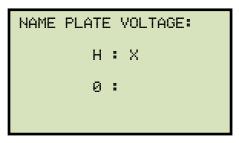
b. The following screen will be displayed:


Select a supported three phase transformer type by pressing the corresponding numeric key on the keypad ([2], [3], [4], or [5]. For this example, we will perform a Yd test (option 3).

c. The following screen will be displayed:

Press the [1] key (YES).

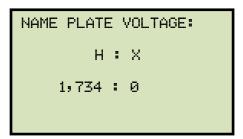
d. The following screen will be displayed:


Press the [7] key (AUTO DETECT).

e. The following screen will be displayed:

```
NAME PLATE VOLTAGE?
1. YES
2. NO
```

1. YES

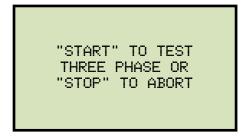

Press the **[1]** key (*YES*) if you would like to enter the transformer name plate voltage values. The following screen will be displayed.

Type the H winding name plate voltage value using the numeric keypad. The screen will be updated as shown below:

```
NAME PLATE VOLTAGE:
H : X
1,734 :
```

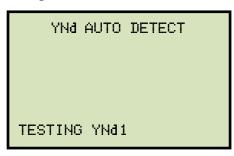
Press the **[ENTER]** key. The screen will be updated as shown below:

Type the X winding name plate voltage value using the numeric keypad. The screen will be updated as shown below:

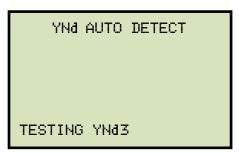

```
NAME PLATE VOLTAGE:
H : X
1,734 : 100
```

Press the **[ENTER]** key. Continue to step f.

2. NO


Press the [2] key (NO) if you do not want to enter the transformer name plate voltage values. Continue to step f.

f. The following screen will be displayed:



Press the **[START]** key to initiate the test.

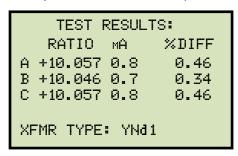
g. The following screen will be displayed while the unit determines the transformer configuration:

The ATRT-03 S2 will start testing the transformer configurations starting with YNd1. If the transformer is not a type YNd1, it will continue to test for the next type (YNd3, YNd5, etc.) until the transformer type has been determined. The screen will be updated as shown below to indicate which configuration is currently being tested for:

Once the transformer type has been determined, the unit will start performing the test.

h. The screen will be updated with the Phase A test results as shown:

```
TEST RESULTS:
RATIO MA %DIFF
A +10.057 0.8 0.46

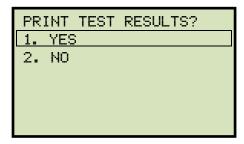

XFMR TYPE: YNd1
```

Testing will continue, and the screen will be updated with the Phase B test results as shown:

```
TEST RESULTS:
    RATIO MA %DIFF
A +10.057 0.8 0.46
B +10.046 0.7 0.34

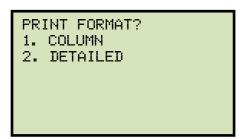
XFMR TYPE: YNd1
```

Finally, the screen will be updated with the Phase C test results as shown:

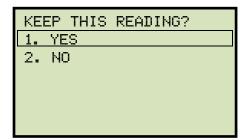


Press any key to continue.

If using an ATRT-03 S2 or ATRT-03A S2, continue to step i.


If using an ATRT-03B S2, continue to step k.

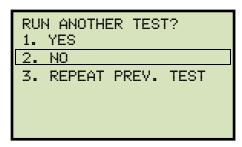
i. The following screen will be displayed:


Press the [1] key (YES) to print the test results.

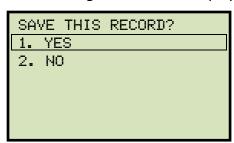
j. The following screen will be displayed:

Press the [1] key (COLUMN) to print a columnar report or press the [2] key (DETAILED) to print a detailed report.

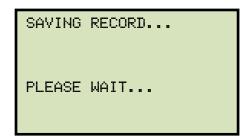
k. The following screen will be displayed:


Press the [1] key (YES) to save the reading.

I. The following screen will be displayed:


Press any key to continue.

m. The following screen will be displayed:


Press the **[2]** key (*NO*).

n. The following screen will be displayed:

Press the [1] key (YES) to save the test record to the unit's Flash EEPROM.

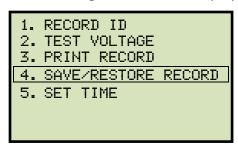
o. The following screen will be displayed momentarily:

The following confirmation screen will then be displayed:

Press any key to return to the "START-UP" menu.

3.5 Working With Test Records

3.5.1. Saving Test Results to a Test Record


After performing a test, the user is presented the option to save the test results to the unit's Flash EEPROM or to a USB Flash Drive. If the test results are not saved immediately after performing a test, they will still remain in the working memory and can be saved later, as long as a new test has not been performed and the unit has not been turned off. Follow the steps below to save the test results from the working memory to a test record (the following procedure can also be used to re-save a restored test record to a new memory location or to a USB Flash Drive):

a. Perform a test or restore a test record to the working memory (see section 3.5.2 and 3.5.3), and then start from the "START-UP" menu:

Press the [2] key (SETUP).

b. The following screen will be displayed:

1. RECORD ID
2. TEST VOLTAGE
3. DISPLAY RECORD
4. SAVE/RESTORE RECORD
5. SET TIME

ATRT-03 S2 and ATRT-03A S2

ATRT-03B S2

Press the [4] key (SAVE/RESTORE RECORD).

c. The following screen will be displayed:

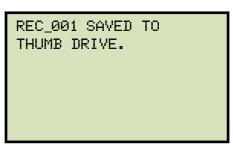


Press the [2] key (SAVE RECORD).

If a USB Flash drive is connected to the unit, continue to step d.

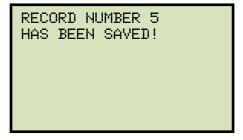
If a USB Flash drive is NOT connected to the unit, continue to step e.

d. The following screen will be displayed:



1. SAVE INTERNALLY

Press the **[1]** key (*SAVE INTERNALLY*) to save the test record to the unit's Flash EEPROM. **Continue to step e.**


2. SAVE TO THUMB DRIVE

Press the **[2]** key (*SAVE TO THUMB DRIVE*) to save the test record to the connected USB Flash drive. The following screen will be displayed:

Press any key to return to the "START-UP" menu.

e. The following screen will be displayed:

Press any key to return to the "START-UP" menu.

3.5.2. Restoring a Test Record From Flash EEPROM

Use the steps below to restore a test record from the ATRT-03 S2's Flash EEPROM to the working memory:

a. Start from the "START-UP" menu:

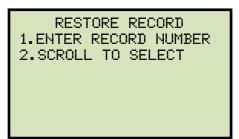
Press the [2] key (SETUP).

b. The following screen will be displayed:

1. RECORD ID
2. TEST VOLTAGE
3. DISPLAY RECORD
4. SAVE/RESTORE RECORD
5. SET TIME

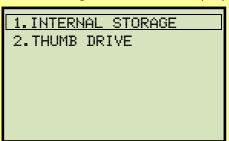
ATRT-03 S2 and ATRT-03A S2

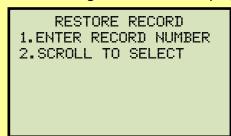
ATRT-03B S2


Press the [4] key (SAVE/RESTORE RECORD).

c. The following screen will be displayed:

Press the [1] key (RESTORE RECORD).


d. The following screen will be displayed:


If you have a USB Flash drive inserted in the ATRT-03 S2's "USB MEM" port, the following screen will be displayed instead of the above screen:

NOTE

Press the [1] key (INTERNAL STORAGE).

The following screen will be displayed:

Continue with the steps below.

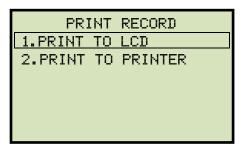
1. ENTER RECORD NUMBER

Press the **[1]** key (*ENTER RECORD NUMBER*) if you know the record number that you would like to restore.

1.1. The following screen will be displayed:

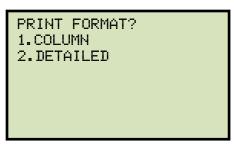
Type the record number using the alpha-numeric keypad and then press the **[ENTER]** key.

1.2. The following screen will be displayed:



Press the [1] key (YES) to print the test record.

If using an ATRT-03 S2 or ATRT-03A S2, continue to step 1.3.


If using an ATRT-03B S2, continue to step 1.4.

1.3. The following screen will be displayed:

Press the [1] key (*PRINT TO LCD*) to display the restored test record data on the unit's LCD screen. **Continue to step 1.4.**

Press the **[2]** key (*PRINT TO PRINTER*) to print the restored test record data on the unit's built-in thermal printer. The following screen will be displayed:

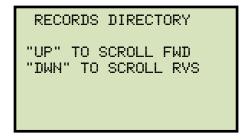
Press the [1] key (COLUMN) to print the test report in columnar format, or press the [2] key (DETAILED) to print the test report in detailed format.

The test report will be printed, and you will be returned to the "START-UP" menu. The restored test record will remain loaded in the working memory.

1.4. The basic information about the restored test record will be displayed as shown:

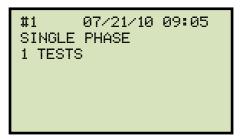
```
YNd1
NUM TESTS: 1
07/22/10 07:52:50
```

Press the **[PAPER** \vee **Contrast]** key. The test record details will be displayed as shown:


```
1 YNd1
8 VOLTS
RATIO MA %DIFF
A +10.057 0.8 0.46
B +10.046 0.7 0.34
C +10.057 0.8 0.46
```

Press the **[STOP]** key to return to the "START-UP" menu. The restored test record will remain loaded in the working memory.

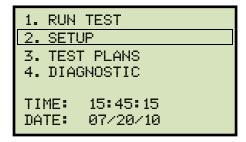
2. SCROLL TO SELECT


Press the **[2]** key (*SCROLL TO SELECT*) to scroll through a directory of the stored test records.

2.1. The following screen will be displayed:

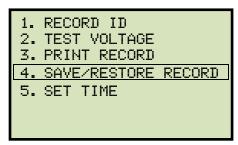
Press the **[PAPER** \land **Contrast]** button or the **[PAPER** \lor **Contrast]** key to display the next or previous test record, respectively.

The basic test record information will be displayed as shown:



When you have located the test record that you would like to restored, press the **[ENTER]** key. **Continue to step 1.2 on page 68.**

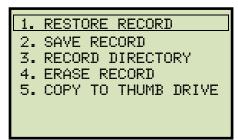
3.5.3. Restoring a Test Record From a USB Flash Drive


Use the steps below to restore a test record from a USB Flash drive to the ATRT-03 S2's working memory:

a. Make sure the USB Flash drive containing the test record(s) is inserted in the ATRT-03 S2's USB Flash drive port ("USB MEM" port). Then start from the "START-UP" menu:

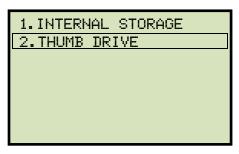
Press the [2] key (SETUP).

b. The following screen will be displayed:



ATRT-03 S2 and ATRT-03A S2

ATRT-03B S2

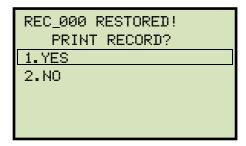

Press the [4] key (SAVE/RESTORE RECORD).

c. The following screen will be displayed:

Press the [1] key (RESTORE RECORD).

d. The following screen will be displayed:

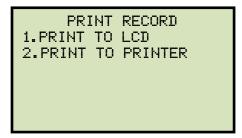
Press the [2] key (THUMB DRIVE).


e. The following screen will be displayed:

Type the record number that you would like to restore using the alpha-numeric keypad. If you do not know the record number, you can first print (ATRT-03 S2 and ATRT-03A S2) or display (ATRT-03B S2) a test record directory using the instructions in section 3.5.6 and 3.5.7.

Press the [ENTER] key.

f. The test record will be restored to the unit's working memory and the following screen will be displayed:

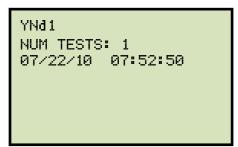


Press the [1] key (YES) to print or display the restored test record.

If using an ATRT-03 S2 or ATRT-03A S2, continue to step g.

If using an ATRT-03B S2, continue to step h.

g. The following screen will be displayed:

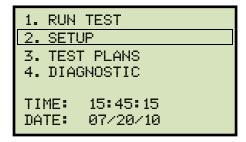

Press the [1] key (PRINT TO LCD) to display the test record date on the unit's LCD screen. Continue to step h.

Press the **[2]** key (*PRINT TO PRINTER*) to print the restored test record on the unit's built-in thermal printer. The following screen will be displayed:

Press the **[1]** key (*COLUMN*) to print the test record in columnar format, or press the **[2]** key (*DETAILED*) to print the test record in detailed format. The test record will be printed, and you will be returned to the "START-UP" menu. The restored test record will remain loaded in the unit's working memory.

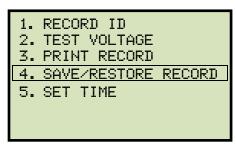
h. The basic information about the restored test record will be displayed as shown below:

Press the **[PAPER** \lor **Contrast]** key. The test record details will be displayed as shown below:


```
1
       YNd1
  8 VOLTS
   RATIO MA %DIFF
A +10.057 0.8 0.46
B +10.046 0.7 0.34
C +10.057 0.8
                    0.46
```

Press the **[STOP]** key to return to the "START-UP" menu. The restored test record will remain loaded in the working memory.

3.5.4. Copying Test Records to a USB Flash Drive


Use the steps below to copy one or all test records from the unit's Flash EEPROM to a connected USB Flash drive:

a. Make sure a USB Flash drive is connected to the unit's "USB MEM" port, and then start from the "START-UP" menu:

Press the [2] key (SETUP).

b. The following screen will be displayed:

ATRT-03 S2 and ATRT-03A S2

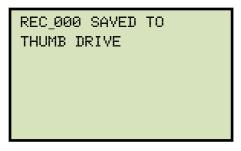
ATRT-03B S2

Press the [4] key (SAVE/RESTORE RECORD).

c. The following screen will be displayed:

Press the [5] key (COPY TO THUMB DRIVE).

d. The following screen will be displayed:



1. COPY SINGLE RECORD

Press the **[1]** key (*COPY SINGLE RECORD*) to copy a single test record from the ATRT-03 S2's Flash EEPROM to the connected USB Flash drive. The following screen will be displayed:

Type the record number using the alpha-numeric keypad and then press the **[ENTER]** key (If you don't know the record number, you can first print or display a test record directory using the instructions in section 3.5.6 and 3.5.7, respectively). The test record will be copied to the USB Flash drive and the following screen will be displayed:

Press any key to return to the "START-UP" menu.

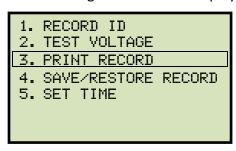
2. COPY ALL RECORDS

Press the **[2]** key (*COPY ALL RECORDS*) to copy all test records from the ATRT-03 S2's Flash EEPROM to the connected USB Flash drive. All test records will be copied from the unit to the connected USB Flash drive. The following screen will be displayed when the process is finished:

ALL RECORDS HAVE BEEN TRANSFERRED TO THUMB DRIVE!

Press any key to return to the "START-UP" menu.

3.5.5. Printing or Displaying a Test Record

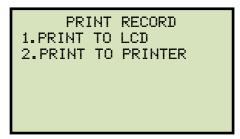

You can print (ATRT-03 S2 and ATRT-03A S2 only) or display (all models) a test record at the time that it is restored (see section 3.5.1 and 3.5.3), or you can restore it to the working memory and print or display it later. To print or display the current test record in the working memory:

a. Perform a test or restore a test record to the working memory (see section 3.5.1 and 3.5.3) and then start from the "START-UP" menu:

Press the [2] key (SETUP).

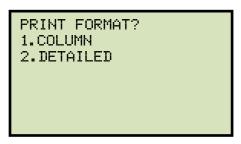
b. The following screen will be displayed:

ATRT-03 S2 and ATRT-03A S2

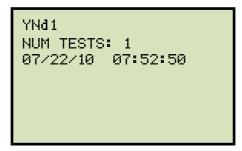

ATRT-03B S2

Press the [3] key.

If using an ATRT-03 S2 or ATRT-03A S2, continue to step c.


If using an ATRT-03B S2, continue to step d.

c. The following screen will be displayed:


Press the **[1]** key (*PRINT TO LCD*) to display the test record data on the unit's LCD screen. **Continue to step d.**

Press the **[2]** key (*PRINT TO PRINTER*) to print the restored test record on the unit's built-in thermal printer. The following screen will be displayed:

Press the **[1]** key (*COLUMN*) to print the test record in columnar format, or press the **[2]** key (*DETAILED*) to print the test record in detailed format. The test record will be printed, and you will be returned to the "START-UP" menu.

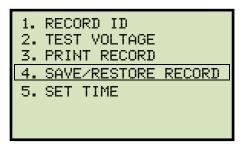
d. The basic information about the restored test record will be displayed as shown below:

Press the **[PAPER** \lor **Contrast]** key. The test record details will be displayed as shown below:

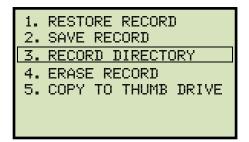
```
1
        YNd1
   8 VOLTS
    RATIO MA %DIFF
A +10.057 0.8 0.46
B +10.046 0.7 0.34
C +10.057 0.8 0.46
C +10.057 0.8
                        0.46
```

Press the **[STOP]** key to return to the "START-UP" menu. The restored test record will remain loaded in the working memory.

3.5.6. Printing a Test Record Directory (ATRT-03 S2 and ATRT-03A S2 Only)


Follow the steps below to print a directory of the test records stored in the unit's Flash EEPROM or on a connected USB Flash drive (ATRT-03 S2 and ATRT-03A S2 only):

a. Start from the "START-UP" menu:


Press the [2] key (SETUP

b. The following screen will be displayed:

Press the [4] key (SAVE/RESTORE RECORD).

c. The following screen will be displayed:

Option 5 (*COPY TO THUMB DRIVE*) is listed only if a USB Flash drive is connected to the unit.

NOTE

Press the [3] key (RECORD DIRECTORY)

If a USB Flash drive is connected to the unit, continue to step d.

If a USB Flash drive is NOT connected to the unit, continue to step e.

d. The following screen will be displayed:

- 1. INTERNAL DIRECTORY 2. THUMB DRIVE DIR
 - 1. INTERNAL DIRECTORY

Press the **[1]** key (*INTERNAL DIRECTORY*) to print a directory of the test records stored in the unit's Flash EEPROM. **Continue to step e.**

2. THUMB DRIVE DIR

Press the [2] key (THUMB DRIVE DIR) to print a directory of the test records stored on the connected USB Flash drive. A full directory of the test records stored on the USB Flash drive will be printed and you will be returned to the "START-UP" menu. Please see Figure 20 for a sample thumb drive directory printout.

e. The following screen will be displayed:

PRINT DIRECTORY

1. FULL DIRECTORY

2. SHORT DIRECTORY

Press the **[1]** key (*FULL DIRECTORY*) to print a full directory listing. This option will print all test record headers. The full record directory will be printed and you will be returned to the "START-UP" menu.

Press the [2] key (SHORT DIRECTORY) to print a short directory consisting of the last twelve record headers. The short record directory will be printed and you will be returned to the "START-UP" menu.

Please see Figure 21 for a sample internal Flash ERRPROM test record directory printout.

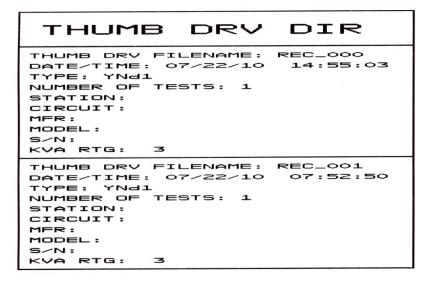


Figure 20. Typical USB Flash Drive (Thumb Drive) Test Record Directory Printout

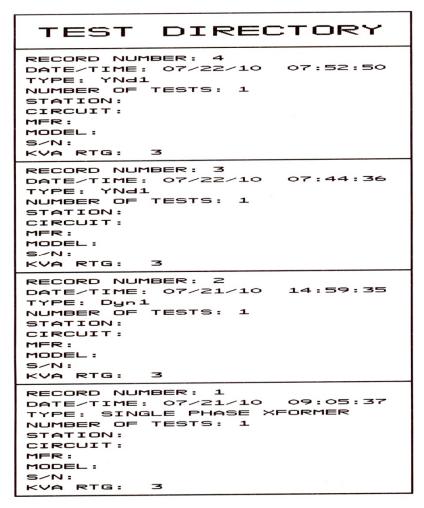
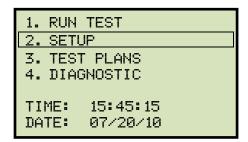



Figure 21. Typical Internal Flash EEPROM Test Record Directory Printout

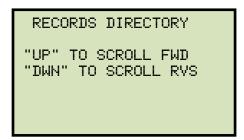
3.5.7. Viewing a Test Record Directory on the LCD Screen (ATRT-03B S2 Only)


Follow the steps below to view a directory of all the test records stored in the ATRT-03B S2's internal Flash EEPROM:

a. Start from the "START-UP" menu:

Press the [2] key (SETUP)

b. The following screen will be displayed:


Press the [4] key (SAVE/RESTORE RECORD).

c. The following screen will be displayed:

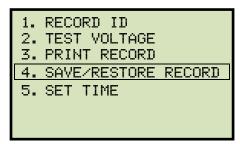
Press the [3] key (RECORD DIRECTORY).

d. The following screen will be displayed:

Press the **[PAPER** \land **Contrast]** or **[PAPER** \lor **Contrast]** key to scroll through the test record directory. The test record header will be displayed as shown:

You can continue to scroll through the record directory by pressing the **[PAPER** \land **Contrast]** and **[PAPER** \lor **Contrast]** keys. Press the **[STOP]** key to return to the "START-UP" menu.

3.5.8. Erasing Test Records from the Flash EEPROM


Follow the steps below to erase test records from the Flash EEPROM:

a. Start from the "START-UP" menu:

Press the [2] key (SETUP).

b. The following screen will be displayed:

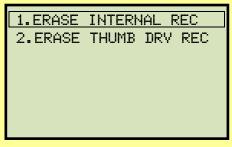
ATRT-03 S2 and ATRT-03A S2

ATRT-03B S2

Press the [4] key (SAVE/RESTORE RECORD).

c. The following screen will be displayed:

Press the [4] key (ERASE RECORD).


d. The following screen will be displayed:

If you have a USB Flash drive inserted in the ATRT-03 S2's "USB MEM" port, the following screen will be displayed instead of the above screen:

NOTE

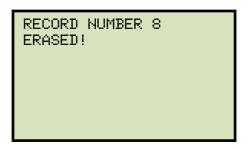
Press the [1] key (ERASE INTERNAL REC).

The following screen will be displayed:

Continue with the steps below.

1. ERASE SINGLE REC.

Press the **[1]** key (*ERASE SINGLE REC.*) to erase a single test record from the unit's internal Flash EEPROM. The following screen will be displayed:


You can cancel the process and return to the "START-UP" menu by pressing the **[STOP]** key.

Type the record number that you would like to erase using the alpha-numeric keypad and then press the **[ENTER]** key. If you do not know the test record number, you can first print or view a test record directory using the instructions in section 3.5.6 and 3.5.7, respectively.

The following screen will be displayed while the record is being erased:

The following screen will be displayed when the test record has been completely erased:

Press any key to continue. You will be returned to the beginning of step d.

2. ERASE ALL RECORDS

Press the [2] key (ERASE ALL RECORDS) to erase all the test records from the unit's internal Flash EEPROM. The following warning screen will be displayed:

```
ERASE ALL RECORDS!
ARE YOU SURE?
"ENTER" TO CONTINUE.
```

You can press the **[STOP]** key to cancel the process and return to the "START-UP" menu.

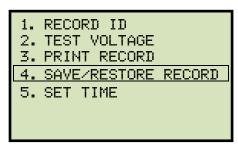
Press the **[ENTER]** key to proceed with deleting all the test records from the unit's Flash EEPROM. The following screen will be displayed during the erasure process:

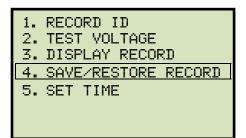
```
ERASING RECORDS
PLEASE WAIT...
```

The following screen will be displayed when all test records have been completely erased:

Press any key to return to the "START-UP" menu.

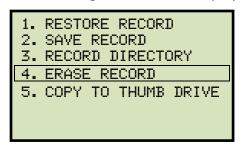
3.5.9. Erasing Test Records from a USB Flash Drive


Follow the steps below to erase test records from a USB Flash drive:


a. Make sure a USB Flash drive is connected to the unit's "USB MEM" port, and then start from the "START-UP" menu:

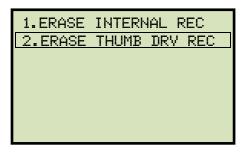
Press the [2] key (SETUP).

b. The following screen will be displayed:



ATRT-03 S2 and ATRT-03A S2

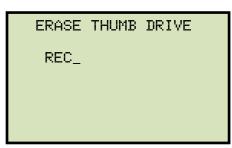
ATRT-03B S2


Press the [4] key (SAVE/RESTORE RECORD).

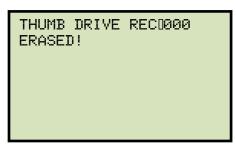
c. The following screen will be displayed:

Press the [4] key (ERASE RECORD).

d. The following screen will be displayed:

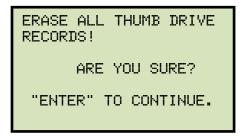

Press the [2] key (ERASE THUMB DRV REC).

e. The following screen will be displayed:


1. ERASE SINGLE REC.

Press the **[1]** key (*ERASE SINGLE REC.*) to erase a single test record from the connected USB Flash drive. The following screen will be displayed:

Type the record number that you would like to erase using the alpha-numeric keypad and then press the **[ENTER]** key. If you do not know the test record number, you can first print a test record directory using the instructions in section 3.5.6 (ATRT-03 S2 and ATRT-03A S2 only).


The test record will be erased from the USB Flash drive and the following screen will be displayed:

Press any key to continue. You will be returned to the beginning of step e. Press the **[STOP]** key to return to the "START-UP" menu.

2. ERASE ALL RECORDS

Press the **[2]** key (*ERASE ALL RECORDS*) to delete all test records from the connected USB Flash drive. The following warning screen will be displayed:

Press the **[STOP]** key if you do not want to erase all the test records. You will be returned to the "START-UP" menu.

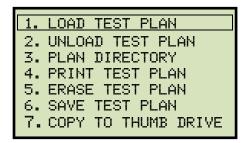
Press the **[ENTER]** key to proceed with deleting all the test records from the connected USB Flash drive. The following screen will be displayed when all the records have been erased:

Press any key to return to the "START-UP" menu.


3.6 Working With Test Plans

The ATRT-03 S2 comes with the Vanguard Transformer Turns Ratio Analyzer Series 2 software (TTRA S2) that can be used to create transformer test plans on a PC (see the TTRA S2 software manual for details). Test plans can then be transferred to the ATRT-03 S2 and used to quickly perform tests.

3.6.1. Performing a Test Using a Transformer Test Plan

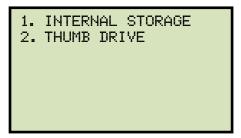

Follow the steps below to perform a test using a test plan:

a. Start from the "START-UP" menu:

Press the [3] key (TEST PLANS).

b. The following screen will be displayed:

NOTE

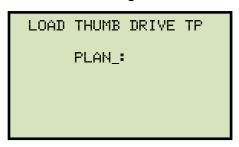

Option 7 (*COPY TO THUMB DRIVE*) will be available only if a USB Flash drive is connected to the "USB MEM" port.

Press the [1] key (LOAD TEST PLAN).

If you have a USB Flash drive connected to the unit, **continue to step c**.

If you do NOT have a USB Flash drive connected to the unit, continue to step d.

c. The following screen will be displayed:

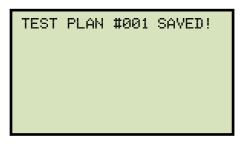


1. INTERNAL STORAGE

Press the **[1]** key (*INTERNAL STORAGE*) to load a test plan from the unit's Flash EEPROM. **Continue to step d.**

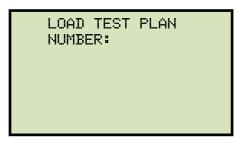
2. THUMB DRIVE

Press the **[2]** key (*THUMB DRIVE*) to load a test plan from the connected USB Flash drive. The following screen will be displayed:


Type the test plan number to load from the USB Flash drive and then press the **[ENTER]** key.

The following screen will be displayed:

```
PLAN_000 LOADED!
SAVE PLAN INTERNALLY?
1. YES
2. NO
```


Press the [2] key (NO) to not save the test plan in the unit's Flash EEPROM and to just load it in the working memory. The test plan will be loaded in the working memory and you will be returned to the "START-UP" menu. Continue to step e to perform a test using the loaded test plan.

Press the **[1]** key (*YES*) to load the test plan to the working memory and also save it in the unit's Flash EEPROM. The following screen will be displayed:

Press any key to continue. The test plan will be loaded in the working memory and also saved to the unit's Flash EEPROM. You will be returned to the "START-UP" menu. **Continue to step e to perform a test using the loaded test plan.**

d. The following screen will be displayed:

Type the test plan number to load from the unit's Flash EEPROM and then press the **[ENTER]** key. The test plan will be loaded from the Flash EEPROM and you will be returned to the "START-UP" menu. **Continue to step e to perform a test using the loaded test plan.**

e. Start from the "START-UP" menu again to run a test using the loaded test plan from the steps above:

Press the [1] key (RUN TEST).

f. The following screen will be displayed (test details will differ depending on the test type defined in the test plan):

The above screen will be displayed only if a test plan is loaded first.

NOTE

Press the [1] key (CONTINUE).

g. The following screen will be displayed:

```
TAP NUMBER 1
H VTG: 1734
X VTG: 100
"START" TO RUN TEST
```

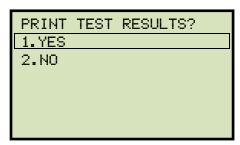
Set the transformer to the tap position indicated on the LCD screen. Press the **[START]** key to run the test using the test plan.

h. The unit will start performing the test and the screen will be updated with the test results as shown:

```
TEST RESULTS
RATIO MA %DIFF
A +10.057 0.8 0.46 P
B +10.046 0.7 0.34 P
C +10.057 0.8 0.46 P

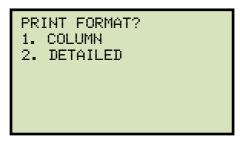
XFMR TYPE: YND1
```


For each phase (A, B, and C) a "P" or "F" will be displayed to indicate Pass or Fail, respectively.

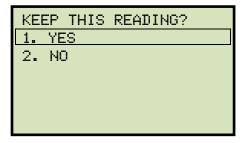

NOTE

Press any key to continue.

If using an ATRT-03 S2 or ATRT-03A S2, continue to step i.


If using an ATRT-03B S2, continue to step k.

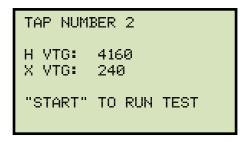
i. The following screen will be displayed:


Press the [1] key (YES) to print the test results.

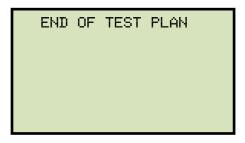
j. The following screen will be displayed:

Press the [1] key (*COLUMN*) to print a columnar report or press the [2] key (*DETAILED*) to print a detailed report. Please see Figure 22 for a sample test results printout.

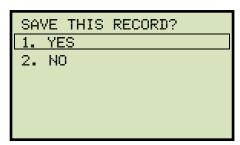
k. The following screen will be displayed:


Press the [1] key (YES) to save the reading.

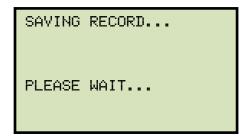
I. The following screen will be displayed:


Press any key to continue.

m. If the test plan included multiple tests, the start-up screen for the next test will be displayed as shown:


Repeat steps h through I for this test.

n. The following screen will be displayed after the last defined test in the test plan has been performed:


Press any key to continue.

o. The following screen will be displayed:

Press the [1] key (YES) to save the test record to the unit's Flash EEPROM.

p. The following screen will be displayed momentarily:

The following confirmation screen will then be displayed:

RECORD NUMBER 1 HAS BEEN SAVED!

Press any key to return to the "START-UP" menu.

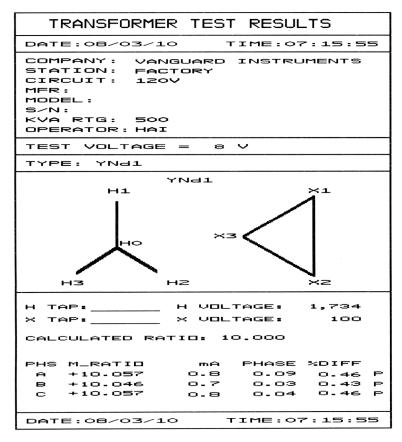
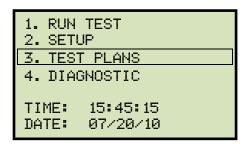
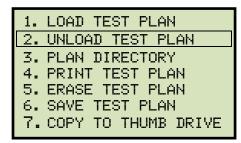



Figure 22. Test Plan Test Results Printout

3.6.2. Unloading a Test Plan From the Working Memory


Follow the steps below to unload a test plan from the working memory:

a. Start from the "START-UP" menu:


Press the [3] key (TEST PLANS).

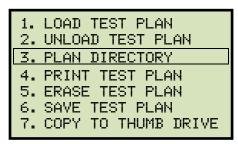
b. The following screen will be displayed:

Press the [2] key (UNLOAD TEST PLAN).

c. The test plan will be unloaded from the working memory, and the following screen will be displayed:

Press any key to return to the "START-UP" menu.

3.6.3. Printing a Test Plan Directory (ATRT-03 S2 and ATRT-03A S2 Only)


Follow the steps below to print a directory of the test plans stored in the unit's Flash EEPROM or on a connected USB Flash drive (ATRT-03 S2 and ATRT-03A S2 only):

a. Start from the "START-UP" menu:

Press the [3] key (TEST PLANS).

b. The following screen will be displayed:

Press the [3] key (PLAN DIRECTORY).

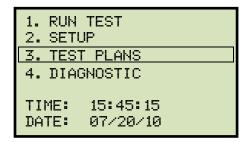
If a USB Flash drive is NOT connected to the unit, a directory of the test plans stored in the unit's Flash EEPROM will be printed, and then you will be returned to the "START-UP" menu.

If a USB Flash drive is connected to the unit, continue to step c.

- c. The following screen will be displayed:
 - 1. INTERNAL DIRECTORY
 - 2. THUMB DRIVE DIR

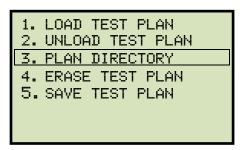
1. INTERNAL DIRECTORY

Press the [1] key (INTERNAL DIRECTORY) to print a directory of the test plans stored in the unit's Flash EEPROM. The directory will be printed and you will be returned to the "START-UP" menu.

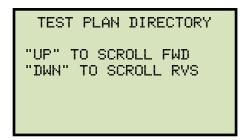

2. THUMB DRIVE DIR

Press the [2] key (THUMB DRIVE DIR) to print a directory of the test plans stored on the connected USB Flash drive. A full directory of the test plans stored on the USB Flash drive will be printed and you will be returned to the "START-UP" menu.

3.6.4. Viewing a Test Plan Directory on the LCD Screen (ATRT-03B S2 Only)


Follow the steps below to view a directory of all the test plans stored in the ATRT-03B S2's internal Flash EEPROM:

a. Start from the "START-UP" menu:


Press the [3] key (TEST PLANS).

b. The following screen will be displayed:

Press the [3] key (PLAN DIRECTORY).

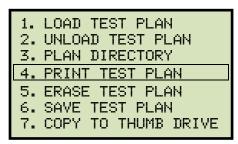
c. The following screen will be displayed:

Press the **[PAPER** \land **Contrast]** or **[PAPER** \lor **Contrast]** key to scroll through the test plan directory. The test plan header will be displayed as shown:

```
#1 YND1
NUM TESTS: 2
GE
EXAMPLE #3
5KVA
```

You can continue to scroll through the test plan directory by pressing the **[PAPER** \land **Contrast]** and **[PAPER** \vee **Contrast]** keys. Press the **[STOP]** key to return to the "START-UP" menu.

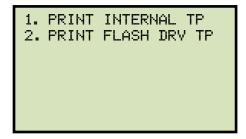
3.6.5. Printing a Test Plan (ATRT-03 S2 and ATRT-03A S2 Only)


Follow the steps below to print a test plan from the internal Flash EEPROM or from a connected USB Flash drive:

a. Start from the "START-UP" menu:

Press the [3] key (TEST PLANS).

b. The following screen will be displayed:



Press the [4] key (PRINT TEST PLAN).

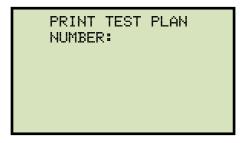
If a USB Flash drive is connected to the unit, continue to step c.

If a USB Flash drive is NOT connected to the unit, continue to step d.

c. The following screen will be displayed:

1. PRINT INTERNAL TP

Press the **[1]** key (*PRINT INTERNAL TP*) to print a test plan from the unit's internal Flash EEPROM. **Continue to step d.**


2. PRINT FLASH DRV TP

Press the [2] key (*PRINT FLASH DRV TP*) to print a test plan from a connected USB Flash drive. The following screen will be displayed:

Type the test plan number using the alpha-numeric keypad and then press the **[ENTER]** key. The test plan details will be printed on the unit's printer and you will be returned to the "START-UP" menu. A sample test plan printout is shown in Figure 23.

d. The following screen will be displayed:

Type the test plan number using the alpha-numeric keypad and then press the **[ENTER]** key. The test plan will be printed on the unit's printer and you will be returned to the "START-UP" menu. A sample test plan printout is shown in Figure 24.

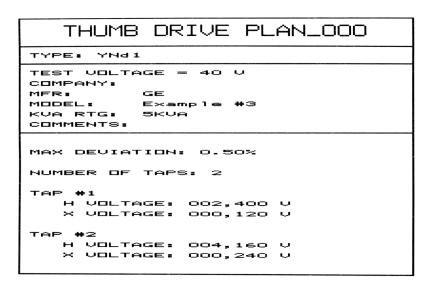


Figure 23. Sample Printout of a Test Plan from a USB Flash Drive

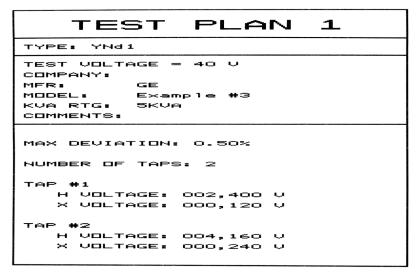
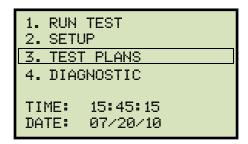
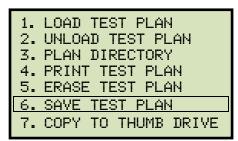



Figure 24. Sample Printout of a Test Plan from Internal Memory

3.6.6. Saving a Test Plan


Use the steps below to save a test plan from the working memory to the unit's Flash EEPROM or to a connected USB Flash drive:

a. Make sure a test plan is loaded in the working memory, and then start from the "START-UP" menu:

Press the [3] key (TEST PLANS).

b. The following screen will be displayed:

Press the [6] key (SAVE TEST PLAN).

If a USB Flash drive is connected to the unit, continue to step c.

If a USB Flash drive is NOT connected to the unit, continue to step d.

c. The following screen will be displayed:

1. SAVE INTERNALLY

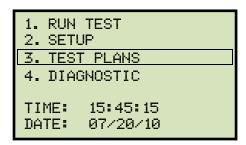
Press the **[1]** key (*SAVE INTERNALLY*) to save the test plan to the unit's Flash EEPROM. **Continue to step d.**

2. SAVE TO THUMB DRIVE

Press the [2] key (SAVE TO THUMB DRIVE) to save the test plan to the connected USB Flash drive. The test plan will be saved to the USB Flash drive and the following screen will be displayed:

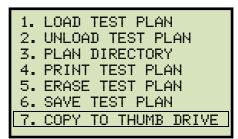
Press any key to return to the "START-UP" menu.

d. The test plan will be saved to the unit's Flash EEPROM and the following screen will be displayed:



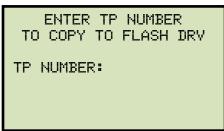
Press any key to return to the "START-UP" menu.

3.6.7. Copying a Test Plan to a USB Flash Drive


Use the steps below to copy a test plan from the unit's Flash EEPROM to a connected USB Flash drive:

a. Make sure a USB Flash drive is connected to the unit's "USB MEM" port, and then start from the "START-UP" menu:

Press the [3] key (TEST PLANS).


b. The following screen will be displayed:

ATRT-03 S2 and ATRT-03A S2

Press the [7] key.

c. The following screen will be displayed:

- 1. LOAD TEST PLAN
- 2. UNLOAD TEST PLAN
- 3. PLAN DIRECTORY
- 4. ERASE TEST PLAN
- 5. SAVE TEST PLAN
- 6. COPY TO THUMB DRIVE

ATRT-03B S2

Press the [6] key.

Type the test plan number using the alpha-numeric keypad and then press the **[ENTER]** key.

d. The selected test plan will be copied to the USB Flash drive and the following message will be displayed:

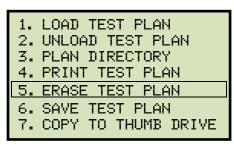
TP 1 SAVED TO THUMB DRIVE AS PLAN_003

Any existing test plans in the Flash drive will NOT be over-written.

NOTE

Press any key to return to the "START-UP" menu.

3.6.8. Erasing Test Plans


Follow the steps below to erase a test plan from the unit's Flash EEPROM or from a connected USB Flash drive:

a. Start from the "START-UP" menu:

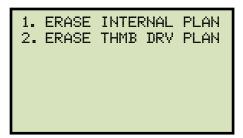
Press the [3] key (TEST PLANS).

b. The following screen will be displayed:

1. LOAD TEST PLAN
2. UNLOAD TEST PLAN
3. PLAN DIRECTORY
4. ERASE TEST PLAN
5. SAVE TEST PLAN

ATRT-03 S2 and ATRT-03A S2

ATRT-03B S2


Press the [5] key (ERASE TEST PLAN)

Press the [4] key (ERASE TEST PLAN)

If a USB Flash drive is connected to the unit, continue to step c.

If a USB Flash drive is NOT connected to the unit, continue to step d.

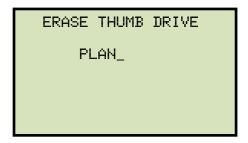
c. The following screen will be displayed:

1. ERASE INTERNAL PLAN

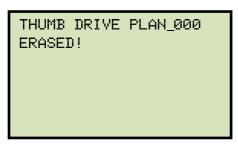
Press the [1] key (ERASE INTERNAL PLAN) to erase test plans from the unit's Flash EEPROM. Continue to step d.

2. ERASE THMB DRV PLAN

Press the **[2]** key (*ERASE THMB DRV PLAN*) to erase test plans from a connected USB Flash drive. The following screen will be displayed:


ERASE TEST PLAN

1. ERASE SINGLE PLAN


2. ERASE ALL PLANS

1. ERASE SINGLE PLAN

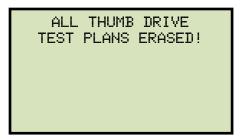
Press the **[1]** key (*ERASE SINGLE PLAN*) to erase a single test plan from the connected USB Flash drive. The following screen will be displayed:

Type the test plan number using the alpha-numeric keypad and then press the **[ENTER]** key. The following screen will be displayed:

Press any key to return to the "START-UP" menu.

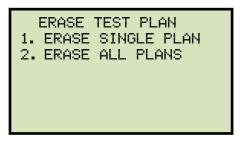
2. ERASE ALL PLANS

Press the [2] key (*ERASE ALL PLANS*) to erase all test plans from the connected USB Flash drive. The following warning screen will be displayed:

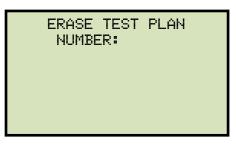

```
ERASE ALL THUMB DRIVE
TEST PLANS!

ARE YOU SURE?

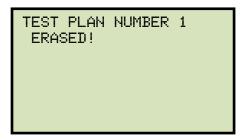
"ENTER" TO CONTINUE
```


If you do NOT want to erase all the test plans from the connected USB Flash drive, press the **[STOP]** key. You will be returned to the "START-UP" menu.

To proceed with erasing all the test plans from the connected USB Flash drive, press the **[ENTER]** key. All test plans will be erased from the USB Flash drive and the following message will be displayed:

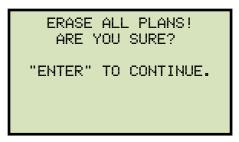

Press any key to return to the "START-UP" menu.

d. The following screen will be displayed:



1. ERASE SINGLE PLAN

Press the **[1]** key (*ERASE SINGLE PLAN*) to erase a single test plan from the unit's internal Flash EEPROM. The following screen will be displayed:


Type the test plan number using the alpha-numeric keypad and then press the **[ENTER]** key. The test plan will be erased and the following message will be displayed:

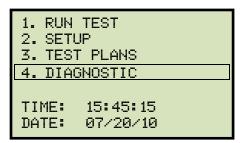
Press any key to return to the "START-UP" menu.

2. ERASE ALL PLANS

Press the [2] key (*ERASE ALL PLANS*) to erase all test plans from the unit's internal Flash EEPROM. The following warning screen will be displayed:

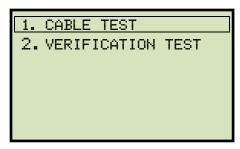
If you do NOT want to erase all the stored test plans from the unit's Flash EEPROM, press the **[STOP]** key. You will be returned to the "START-UP" menu.

To proceed with erasing all the test plans from the unit's Flash EEPROM, press the **[ENTER]** key. All test plans will be erased from the unit's Flash EEPROM and the following message will be displayed:

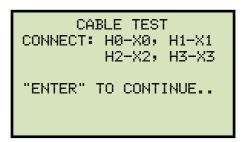

Press any key to return to the "START-UP" menu.

4.0 DIAGNOSTICS, VERIFICATION, AND TROUBLESHOOTING

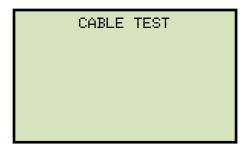
4.1 Performing an H and X Cable Diagnostic Test


Use the steps below to perform a diagnostic test on the H and X cables:

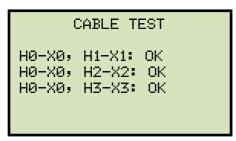
a. Start from the "START-UP" menu:


Press the [4] key (DIAGNOSTIC).

b. The following screen will be displayed:


Press the [1] key (CABLE TEST).

c. The following screen will be displayed:

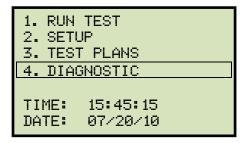


Connect the H and X cables per the on-screen instructions and then press the **[ENTER]** key.

d. The following screen will be displayed while the cables are being tested:

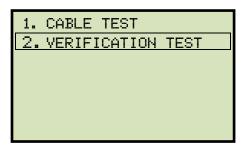
The screen will be updated with the status of each test as shown:

"NOT OK" will be displayed for a failed diagnostic test.


NOTE

Press any key to return to the "START-UP" menu.

4.2 Performing a Verification Test


Use the steps below to perform a verification test on the ATRT-03 S2's electronics:

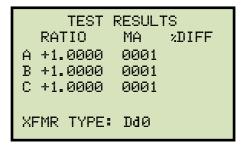
a. Start from the "START-UP" menu:

Press the [4] key (DIAGNOSTIC).

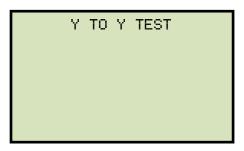
b. The following screen will be displayed:


Press the [2] key (VERIFICATION TEST).

c. The following screen will be displayed:


```
VERIFICATION TEST
CONNECT: H0-X0, H1-X1
H2-X2, H3-X3
"ENTER" TO CONTINUE..
```

Connect the H and X cables per the on-screen instructions and then press the **[ENTER]** key.


d. The ATRT-03 S2 will start performing a DELTA-DELTA test. The following screen will be displayed momentarily:

The screen will then be updated with the test results for each phase:


The unit will then proceed to perform a Y to Y test. The following screen will be displayed momentarily:

The screen will then be updated with the test results for each phase:

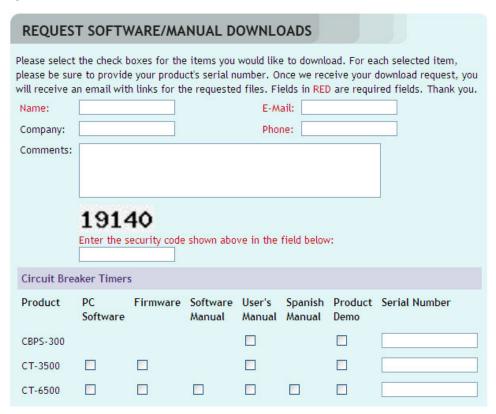
```
TEST RESULTS
RATIO MA %DIFF
A +1.0000 0001
B +1.0000 0001
C +1.0000 0001
XFMR TYPE: YNyn0
```

The following screen will be displayed when testing is finished:

The ratio reading should be 1.0000 ±0.1% for all tests.

NOTE

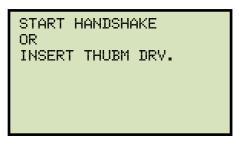
Press any key to return to the "START-UP" menu.


5.0 UPGRADING FIRMWARE

The ATRT-03 S2's firmware is user-upgradeable. You can download the latest firmware from the Vanguard Instruments Company web site at http://www.vanguard-instruments.com. Use the steps below to download and install the latest ATRT-03 S2 firmware:

a. Visit the Vanguard web site at http://www.vanguard-instruments.com and click on the "Downloads" button:

b. You will be taken to the "Downloads" page and presented with a "Download Request Form":


Fill out all required fields (marked with red labels) and then click on the "Firmware" checkbox to the right of the "ATRT-03 S2" label. Then fill out the serial number field on the right. Click on the "Submit" button once all form fields have been filled out.

c. The following confirmation page will be displayed:

REQUEST SOFTWARE/MANUAL DOWNLOADS	
We have received your download request and an email will be sent to links within the next 24 hours. Thank you.	you with the download
	Copyright 2005, VIC

You will also receive an email confirming the receipt of your download request. Once your request has been received, you will receive a second email, usually within 1-2 business hours, containing a download link for the firmware file. Click on this link and download the firmware file to your computer (PC only).

- d. The downloaded file will be in ZIP compressed format. Unzip this file to an empty directory (you can use a utility like Winzip, 7Zip, Winrar, etc.). Once un-compressed, you should see a file named *ATRT-03S2.HEX*. Copy this file to the root of a USB Flash drive.
- e. Make sure the ATRT-03 S2's power is OFF, and then insert the USB Flash drive containing the firmware file in the ATRT-03 S2's Flash drive port (labeled "USB MEM").
- f. While holding down the **[STOP]** key, turn on the unit.
- g. Continue to hold down the **[STOP]** key while the unit powers up.
- h. After the initial logo screen, the following screen will be displayed:

Continue to hold down the [STOP] key.

i. The firmware upgrade process will start and the following screen will be displayed:

```
ERASING EXT 4

LOADING CODE
FROM FLASH DRV.
```

You can release the **[STOP]** key at this point. The ATRT-03 S2 will continue with the upgrade process and display the following screen:

```
ERASING BLOCK 4
LOADING CODE
FROM FLASH DRV.
```

When the firmware upgrade has finished, the following screen will be displayed:

LOADING CODE FROM FLASH DRV. BOOT LDR R X.XX

You will hear a series of beeps as the unit re-boots. Once the unit has re-booted, the "START-UP" menu will be displayed. The upgraded unit is now ready for use.

APPENDIX A - TRANSFORMER VECTOR GROUP CODES

Utility power transformers manufactured in accordance with IEC specifications have a Rating Plate attached in a visible location. This plate contains a list of the transformer's configuration and operating specifications. One such rating is the winding configuration and phase-displacement code. This code follows a convention that comprises letter and number sets that denote three-phase winding configurations (i.e., Wye, delta, or zig-zag). Letter symbols for the different windings are noted in descending order of their rated voltages. That is, symbols denoting higher voltage ratings will be in upper-case letters and symbols denoting lower or intermediate voltage ratings will be in lower-case letters. If the neutral point of either a wye or zig-zag winding is brought out, the indication will be an N (high voltage) or n (lower voltage). The end numeral is a 300 multiplier that indicates phase lag between windings.

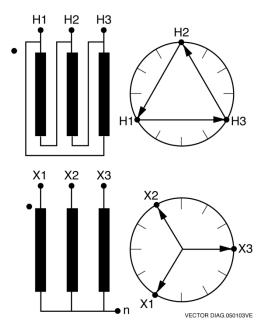
Accordingly, the following standard practice applies:

Wye (or star) = Y (high voltage) or y (low voltage)

Delta = D (high voltage) or d (low voltage)

Zig-zag = Z (high voltage) or z (low voltage)

For example, **Dyn11** decodes as follows:


D indicates that the high-voltage windings are connected in a Delta configuration

(Since delta windings do not have a neutral point, the N never appears after a D).

y indicates that the lower voltage winding is in a wye (or star) configuration.

n indicates that the lower voltage windings have the neutral point brought out.

11 indicates a phase-displacement lag of 330 degrees between the Wye and the Delta winding.

APPENDIX B – Common ANSI Transformer Descriptions

	TRANSF CONFIGU			WINDING	WINDING TESTED			
STD TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	TURNS RATIO	VECTOR GROUP	NOTES
1	н ₁ О——ОН ₂	x ₁ 0	1 Ø	H ₁ – H ₂	x ₁ -x ₂	V _H V _x	1ph0	SNG - PHS
2	H ₂ C	x ₁ 0 a 0 x ₂	A B	H ₁ -H ₃ H ₂ -H ₁	$x_1 - x_0$ $x_2 - x_0$	V _H . V ₃	D _{yn1}	dt-Y
	$H_1 \circ A \hookrightarrow H_3$, c \sum_{0}^{3}	С	H ₃ -H ₂	x ₃ -x ₀	v _x	- y111	. .
	н ₂ О	a X2	Α	H ₁ -H ₀	X ₁ -X ₂	V		
3	B H _O	X ₁ b	В	H ₂ -H ₀	x ₂ -x ₃	$\frac{V_H}{V_x \cdot V_3}$	YNd1	y – d t
	H ₁ C C H ₃	c → x ³	С	H ₃ -H ₀	X ₃ -X ₁			
	Н ₂ О	× ₂ Ω	Α	H ₁ -H ₃	$x_{1} - x_{3}$.,		
4	В	b/\c	В	H ₂ -H ₁	$X_{2}^{-}X_{1}$	$\frac{v_{H}}{v_{x}}$	Dd0	d t – d t
	$H_1 \circ H_3$	x_1 x_3 x_3	С	H ₃ -H ₂	X ₃ -X ₂	×		
	H ₂	х ₂ О	Α	H ₁ -H ₀	x ₁ -x ₀	V		
5	B H ₀	$a \stackrel{b}{\bigwedge} X_0$	В	H ₂ -H ₀	x ₂ -x ₀	$\frac{V_{H}}{V_{x}}$	YNyn0	y – y
	H ₁ C C H ₃	x_1 x_3	С	H ₃ -H ₀	x ₃ -x ₀	^		

VANGUARD.050207V1

	TRANSF CONFIGL				WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	н ₂	X ₃		Α	H ₁ – H ₃	$X_3 - X_1$	V		
1	B/C	c b	_	В	H ₂ – H ₁		$\frac{V_H}{V_X}$	Dd6	
	$H_1 \stackrel{\longleftarrow}{ \longrightarrow} H_3$	× ₂		С	H ₃ – H ₂	$X_2 - X_3$,		
	н ₂ Я	x ₂ A		Α	H ₁ – H ₃	$X_1 - X_3$	V		
37	B/C	b/ C		В	H ₂ – H ₁	$X_2 - X_1$	$\frac{v_{H}}{v_{x}}$	Dd0	
	H ₁ 0 A H ₃	х ₁ о а он ₃		С	H3 – H2	$X_3 - X_2$			
	н ₁ Я	X ₃ X ₁		Α	H ₁ - H ₂	X3 - X2	V.,		
38	C/\A	a\c	_	В	H ₂ – H ₃	X ₁ – X ₃	$\frac{V_H}{V_X}$	Dd2	
	H ₃ 0 B H ₂	x ₂		С	H3 – H1	X ₂ – X ₁			
	^н 1 Я	X ₃ A		Α	H ₁ – H ₂	X3 – X1	, , , , , , , , , , , , , , , , , , ,		
39	C/ A	c/ a	_	В	H ₂ – H ₃	X ₁ – X ₂	$\frac{V_H}{V_X}$	Dd4	
	н ₃ В Н ₂	$x_2 \xrightarrow{b} x_1$		С	H3 – H1	X ₂ – X ₃			
	н ₁ Я	X ₂ A		Α	H ₁ – H ₂)	V		
40	C/ A	c/a	_	В	H ₂ – H ₃		$\frac{V_H}{V_X}$	Dd8	
	H ₃ 0 B H ₂	$x_1 Q \xrightarrow{p} p x_3$		С	H ₃ – H ₁	$X_1 - X_2$			
	^н 1 Я	$X_1 \xrightarrow{b} X_2$		Α	H ₁ – H ₂	X ₁ – X ₃	V		
41	C/ A	a\/c		В	H ₂ – H ₃	X ₂ – X ₁	$\frac{V_{H}}{V_{x}}$	Dd10	
	н ₃	×3		С	H3 – H1	X ₃ – X ₂			
	н ₁ Я	9 ^{x₁}		Α	H ₁ – H ₃	X ₁ – X ₀	V Va		
42	A B	x ₃ ο <u></u> σ(x ₀	_	В	H ₂ – H ₁	X ₂ – X ₀	$\frac{V_{H} \cdot V_{3}}{V_{X}}$	Dyn1	
	H ₃ d C H ₂	δ _{x2}		С	H ₃ – H ₂	X3 – X0			
	н ₂ Я	b) ^{X2}	H ₃ -H ₂	Α	H ₁ – H ₃	$X_1 - X_3$	V _H •V3		NO ACCESSIBLE
2	B C	X ₁ 0—•	H ₁ -H ₃	В	H ₂ – H ₁	$X_2 - X_1$	$\frac{1}{V_X}$	Dy1	ACCESSIBLE NEUTRAL ON
	H ₁ 0 A H ₃	_c ρ ^{x³}	H ₂ -H ₁	С	H3 – H2	$X_3 - X_2$			WYE WINDING
	н ₂	X ₁ Q _c	H ₃ -H ₂	Α	H ₁ – H ₃	X ₁ – X ₂	V11 - V2		NO ACCESSIBLE
61	B/C	b x_0 x_2	H ₁ -H ₃	В	H ₂ – H ₁	X ₂ – X ₃	$\frac{V_{H} \cdot V_{3}}{V_{X}}$	Dy3	NEUTRAL ON
	H ₁ 0 A H ₃	х30	H ₂ -H ₁	С	H ₃ – H ₂	X ₃ – X ₁			WYE WINDING
	н ₂ Я	X ₁ Q _c		Α	H ₁ – H ₃	$X_0 - X_2$	V _H •V₃		
62	B C	x_0 x_2		В	H ₂ – H ₁	$x^0 - x^3$	$\frac{V_{H} \cdot V_{S}}{V_{X}}$	Dyn3	
	$H_1 \stackrel{\longleftarrow}{\longrightarrow} H_3$	x ₃ 0 ^0		С	H3 – H2	$x_0 - x_1$			

	TRANSF CONFIGL				WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	H ₂	_ا ک ^X 1		Α	H ₁ – H ₃	$X_3 - X_0$			
3	В	x_3 x_0 x_0		В	H ₂ – H ₁	$X_1 - X_0$	$\frac{V_{H} \cdot V_{3}}{V_{Y}}$	Dyn5	
	$H_1 \circ H_3$	^с Ъх ₂		С	H3 – H2	$X_2 - X_0$	٧x		
	н ₂ О	, ه ^X 1	H ₃ -H ₂	Α	H ₁ – H ₃	$X_3 - X_2$			NO
4	ВСС	x_3 q q	H ₁ -H ₃	В	H ₂ – H ₁	$X_1 - X_3$	$\frac{V_{H} \cdot V_{3}}{V_{4}}$	Dy5	ACCESSIBLE NEUTRAL ON
	$H_1 \circ H_3$	° 6×2	H ₂ -H ₁	С	H3 – H2	$X_2 - X_1$	٧x		WYE WINDING
	Η ₂	X ₃ Q c		Α	H ₁ – H ₃	$X_0 - X_1$			
5	В	x_0 \xrightarrow{a} x_1		В	H ₂ – H ₁	$X_0 - X_2$	$\frac{V_{H} \cdot V_{3}}{V_{x}}$	Dyn7	
	$H_1 \stackrel{\longleftarrow}{ \longrightarrow} H_3$	_{Х2} б ^в		С	H ₃ – H ₂	$x_0 - x_3$	^		
	H ₂ O	^{Х3} Q c	H ₃ -H ₂	Α	H ₁ – H ₃	$X_3 - X_1$			NO
6	В	η	H ₁ -H ₃	В	H ₂ – H ₁	$X_1 - X_2$	$\frac{V_{H} \cdot V_{3}}{V_{Y}}$	Dy7	ACCESSIBLE NEUTRAL ON
	$H_1 \circ H_3$	_{х2} о ь	H ₂ -H ₁	С	H3 – H2	$X_2 - X_3$	Î		WYE WINDING
	H ₂ O	, ρ ^{x₃}	H ₃ -H ₂	Α	H ₁ – H ₃	$X_2 - X_1$			NO
63	ВСС	x_2 0 a x_0	H ₁ -H ₃	В	H ₂ – H ₁	X3 - X2	$\frac{V_{H} \cdot V_{3}}{V_{x}}$	Dy9	ACCESSIBLE NEUTRAL ON
	$H_1 \circ H_3$	° 6 ×₁	H ₂ -H ₁	С	H3 – H2	X ₁ – X ₃	v _x		WYE WINDING
	H ₂ Q	, ه ^X 3		Α	H ₁ – H ₃	$X_2 - X_0$			
64	ВСС	$x_2 o \xrightarrow{a} o x_0$	_	В	H ₂ – H ₁	X3 - X0	$\frac{V_{H} \cdot V_{3}}{V_{x}}$	Dyn9	
	$H_1 \stackrel{\longleftarrow}{\circ} H_3$	° ∕ >×₁		С	H3 – H2	$X_1 - X_0$	·×		
	H ₂ C	^Х 2 Q с		Α	H ₁ – H ₃	X ₀ – X ₃			
7	В	x_0 \xrightarrow{a} ox_3		В	H ₂ – H ₁	$X_0 - X_1$	$\frac{V_{H} \cdot V_{3}}{V_{Y}}$	Dyn11	
	$H_1 \circ H_3$	X ₁ σ ^b		С	H ₃ – H ₂	$X_0 - X_2$	l *x		
	H ₂	^{Х2} Q с	H ₃ -H ₂	Α	H ₁ – H ₃	$X_2 - X_3$, , , , , , , , , , , , , , , , , , ,		NO
8	ВСС	η	H ₁ -H ₃	В	H ₂ – H ₁	X3 – X1	$\frac{V_{H} \cdot V_{3}}{V_{X}}$	Dy11	ACCESSIBLE NEUTRAL ON
	$H_1 \circ H_3$	X ₁ o b	H ₂ -H ₁	С	H3 – H2	X ₁ – X ₂	<u> </u>		WYE WINDING
	H ₁	Ŏ Ŏ	H ₂ -H ₃	Α	H ₁ – H ₂	$X_1 - X_0$			
45	C/\A	c X ₀ a	H ₃ -H ₁	В	H ₂ – H ₃	$X_2 - X_0$	$\frac{3}{2} \cdot \frac{V_H}{V_X}$	Dzn0	
	H_3 H_2	X_3 b X_2	H ₁ -H ₂	С	H ₃ – H ₁	$X_3 - X_0$	_ ·x		
	H ₁	x ₃ 0	H ₂ -H ₃	Α	H ₁ - H ₂	$X_0 - X_2$	V		
46	C/A	$\stackrel{\wedge_3}{\underset{a}{\bigvee}_{X_0}}$ c	H ₃ -H ₁	В	H ₂ – H ₃	X ₀ – X ₃	$\frac{3}{2} \cdot \frac{V_H}{V_X}$	Dzn2	
	H ₃ 0 B H ₂	\mathcal{S}_{x_2}	H ₁ -H ₂	С	H ₃ – H ₁	$X_0 - X_1$	×		

	TRANSF CONFIGL				WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	H ₁ Ω	x ₃ b x ₁ x ₁		Α	H ₁ - H ₂	X3 - X2	V		NO
47	C/\A	a C	—	В	H ₂ – H ₃	X ₁ – X ₃	$\frac{V_{H}}{V_{x}}$	Dz2	ACCESSIBLE NEUTRAL
	н ₃ о В рн ₂	δx ₂		С	H3 – H1	X ₂ – X ₁			NEOTINE
	н ₁ Q	2 ×3	H ₂ -H ₃	Α	H ₁ - H ₂	$x_3 - x_0$, V _{LI}		
48	C/\A	^a X ₀ b	H ₃ -H ₁	В	H ₂ – H ₃	$X_1 - X_0$	$\frac{3}{2} \cdot \frac{V_H}{V_X}$	Dzn4	
	$H_3 d \xrightarrow{B} H_2$	$X_2^{O} _{C} X_1^{O}$	H ₁ -H ₂	С	H3 – H1	$X_2 - X_0$			
	H ₁	ρ^{x_3}		Α	H ₁ - H ₂	X3 – X1	,,		NO
49	C/\A	a n b	—	В	H ₂ – H ₃	X ₁ – X ₂	$\frac{v_{H}}{v_{x}}$	Dz4	ACCESSIBLE NEUTRAL
	H_3 H_2	X_2^{\bullet} X_1^{\bullet}		С	H3 – H1	X ₂ – X ₃			NEOTRAL
	н ₂ Q	\mathbf{q}^{X_2}		Α	H ₁ – H ₃	X ₁ – X ₃	V		NO
9	ВСС	a η b	—	В	H ₂ – H ₁	$X_2 - X_1$	$\frac{V_{H}}{V_{x}}$	Dz0	ACCESSIBLE NEUTRAL
	$H_1 \circ H_3$	X_1 $C \longrightarrow X_3$		С	H3 – H2	X3 - X2			
	Η ₂	x ₃ 0—c		Α	H ₁ – H ₃	$X_3 - X_1$			NO
10	В	bηa		В	$H_2 - H_1$	$X_1 - X_2$		Dz6	ACCESSIBLE NEUTRAL
	$H_1 \stackrel{\longleftarrow}{\longrightarrow} H_3$	δx ₂		С	$H_3 - H_2$	$X_2 - X_3$	X		NEOTHINE
	H ₁	X ₂ b	H ₂ -H ₃	Α	H ₁ – H ₂	$X_0 - X_1$	V		
50	C/A	2 ${}_{a}$ ${}^{\times}_{0}$ c	H ₃ -H ₁	В	H ₂ – H ₃	$X_0 - X_2$	$\frac{3}{2} \cdot \frac{V_H}{V_V}$	Dzn6	
	H_3 H_2	ρ_{x^1}	H ₁ -H ₂	С	H3 – H1	$x^0 - x^3$	×		
	H ₁ C	Q ^{X2}	H ₂ -H ₃	Α	H ₁ – H ₂	$X_2 - X_0$	V		
51	C/A	$C \longrightarrow X_0 \times X_3$	H ₃ -H ₁	В	H ₂ – H ₃	X3 – X0	$\frac{3}{2} \cdot \frac{V_H}{V_V}$	Dzn8	
	H_3 H_2	X ₁	H ₁ -H ₂	С	H3 – H1	$X_1 - X_0$	х		
	н ₁ Я	Q ^{X2}		Α	H ₁ - H ₂	X ₂ – X ₃			NO
52	C/A	° a x	_	В	H ₂ – H ₃	X3 – X1	$\frac{V_{H}}{V_{x}}$	Dz8	ACCESSIBLE NEUTRAL
	H_3 H_2	X_1 X_3		С	H ₃ – H ₁	X ₁ – X ₂	×		NEOTHAL
	H ₁	Q ¹ c ₂ C ₂	H ₂ -H ₃	Α	H ₁ – H ₂	$X_0 - X_3$.,		
53	C/A	$b \xrightarrow{b} x_0$	H ₃ -H ₁	В	H ₂ – H ₃	$X_0 - X_1$	$\frac{3}{2} \cdot \frac{V_H}{V_X}$	Dzn10	
	H_3 H_2	x ₃ o	H ₁ -H ₂	С	H ₃ – H ₁	$X_0 - X_2$	- v _x		
	H ₁	Q ¹ c ₂ C ²		Α	H ₁ – H ₂	X ₁ – X ₃			NO
54	C/A	b a		В	H ₂ – H ₃	X ₂ – X ₁	$\frac{V_{H}}{V_{x}}$	Dz10	ACCESSIBLE NEUTRAL
	H ₃	x ₃ o "		С	H3 – H1	X ₃ – X ₂	·x		NEUTRAL

	TRANSF CONFIGL				WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	H ₂	X ₃ 2 ° °		Α	H ₁ - H ₀	$X_2 - X_1$			
11	A H ₀	ь > х1	_	В	H ₂ – H ₀	X3 - X2	$\frac{V_H}{V_X \bullet V_3}$	YNd7	
	H ₁ 0 С ОН ₃	X ₂ a		С	H3 – H0	$X_1 - X_3$	· X • · 3		
	H ₂	a X_2		Α	H ₁ – H ₀	$X_1 - X_2$			
44	BH ₀	X ₁ b	_	В	H ₂ – H ₀	$X_2 - X_3$	$\frac{V_H}{V_X \bullet V_3}$	YNd1	
	H ₁ 0 С ОН ₃	° √ _{X3}		С	H3 – H0	$X_3 - X_1$	× • • • •		
	H ₂	a X2	H ₃ -H ₂	Α	H ₁ – H ₃	$X_1 - X_2$			NO
12	BN	X ₁ b	H ₁ -H ₃	В	H ₂ – H ₁	X ₂ – X ₃	$\frac{V_H}{V_X} \cdot \frac{V_3}{2}$	Yd1	ACCESSIBLE NEUTRAL ON
	H ₁ 0 С ОН ₃	c \wedge \times^3	H ₂ -H ₁	С	H3 – H2	X3 – X1	*x 2		WYE WINDING
	H ₂	a \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Α	H ₁ - H ₀	X3 - X ₁			
13	BHO	X ₃ b	_	В	H ₂ – H ₀	X ₁ – X ₂	$\frac{V_H}{V_X \bullet V_3}$	YNd5	
	H ₁ 0 C OH ₃	° X ₂		С	H3 – H0	X ₂ – X ₃	×x • • • 3		
	H ₂	a \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	H ₃ -H ₂	Α	H ₁ – H ₃	X ₃ - X ₁			NO
14	B	X ₃ b	H ₁ -H ₃	В	H ₂ – H ₁	$X_1 - X_2$	$\frac{V_H}{V_{\odot}} \cdot \frac{V_{\overline{3}}}{2}$	Yd5	ACCESSIBLE NEUTRAL ON
	н ₁ 0 С ОН ₃	c X ₂	H ₂ -H ₁	С	H ₃ – H ₂	$X_2 - X_3$	· · x -		WYE WINDING
	H ₂	X ₃ Q. с	H ₃ -H ₂	Α	H ₁ – H ₃	$X_2 - X_1$			NO
15	B	ь х1	H ₁ -H ₃	В	H ₂ – H ₁	$X_3 - X_2$	$\frac{V_H}{V_X} \cdot \frac{V_3}{2}$	Yd7	ACCESSIBLE NEUTRAL ON
	H ₁ 0 C OH ₃	X ₂ a	H ₂ -H ₁	С	H ₃ – H ₂	X ₁ - X ₃	VX 2		WYE WINDING
	H ₂	Х ₂ С с		Α	H ₁ - H ₀	X ₁ – X ₃			
16	BHO	ь × ₃		В	H ₂ – H ₀	X2-X1	$\frac{V_H}{V_X \bullet V_3}$	YNd11	
	H ₁ 0 C OH ₃	X ₁ a		С	H ₃ – H ₀	X3 - X2	1		
	Н ₂	X ₂ Q	H ₃ -H ₂	Α	H ₁ – H ₃	X ₁ – X ₃			NO
17	B	ь X ₃	H ₁ -H ₃	В	H ₂ – H ₁	X ₂ – X ₁	$\frac{V_H}{V_X} \cdot \frac{V_3}{2}$	Yd11	ACCESSIBLE NEUTRAL ON
	H ₁ 0 C OH ₃	X ₁ a	H ₂ -H ₁	С	H ₃ – H ₂	X3 - X2	V _X Z		WYE WINDING
	H ₂	x ₃ 0 a 0 x ₁		Α	H ₁ – H ₀	$X_0 - X_1$			
18	B H ₀	X_3 C A		В	H ₂ - H ₀	$X_0 - X_2$	$\frac{V_H}{V_X}$	YNyn6	
	H ₁ 0 C OH ₃	x ₂		С	H ₃ – H ₀	$X_0 - X_3$	v _x		
	H ₂	× ₂ О	H ₂ -H ₀	А	H ₁ – H ₀	X ₁ – X ₂			NO
19	₽Υ	b n	H ₃ -H ₀	В	H ₂ – H ₀	X ₂ – X ₃	$\frac{v_H}{v_x}$	YNy0	ACCESSIBLE NEUTRAL ON
	H ₁ 0 C OH ₃	x_1 x_2 x_3	H ₁ -H ₀	С	H ₃ – H ₀	X3 - X1	v _x		LOW VOLTAGE WINDING

				WINDING	TESTED			
HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
H ₂	х ₂	x ₃ -x ₀	Α	H ₁ – H ₃	$X_1 - X_0$.,		NO ACCESSIBLE
$A = \begin{bmatrix} B \\ A \end{bmatrix}$ N	$\int_{a}^{b} X_{0}$	x ₁ -x ₀	В	H ₂ – H ₁	$X_2 - X_0$		Yyn0	NEUTRAL ON HIGH VOLTAGE
H ₁ 0 C OH ₃	x ₁ 0 c 0x ₃	x ₂ -x ₀	С	H ₃ – H ₂	$X_3 - X_0$	^		WINDING
H ₂	х ₂		Α	H ₁ – H ₀	$X_1 - X_0$	V		
$A = H_0$	$\int_{a} X_{0}$	_	В	H ₂ – H ₀	$X_2 - X_0$		YNyn0	
н ₁ 0 с он ₃	x ₁ 0 c 0x ₃		С	H3 – H0	X3 - X0	٦		
H ₂	X ₂		Α	H ₁ – H ₃	X ₁ – X ₃	.,		NO
$B \int_{N}$	βblη		В	H ₂ – H ₁	X ₂ – X ₁	V _H	Yy0	ACCESSIBLE NEUTRAL
н ₁ 0 С ОН ₃	X_1 C		С	H3 – H2	X3 - X2	×		NEOTINE
H ₂	χ ₃ Ο _ a Ο χ ₁	H ₂ -H ₀	Α	H ₁ – H ₀	X ₂ – X ₁	.,		NO 100500IDLE
BHO	σ c b η	H ₃ -H ₀	В	H ₂ – H ₀	X3 - X2	-V _H	YNy6	ACCESSIBLE NEUTRAL ON
H ₁ 0 C OH ₃	x ₂ O	H ₁ -H ₀	С	H ₃ – H ₀	X ₁ – X ₃			LOW VOLTAGE WINDING
H ₂	χ _ο ο a,Οχ,	x ₃ -x ₀	Α	H ₁ – H ₃	$X_0 - X_1$			NO ACCESCIBLE
B	3 c X ₀ '	x ₁ -x ₀	В	H ₂ – H ₁	$X_0 - X_2$		Yyn6	ACCESSIBLE NEUTRAL ON
н ₁ 0 С ОН ₃	x ₂ o	x ₂ -x ₀	С	H ₃ – H ₂	$x_0 - x_3$	·x		HIGH VOLTAGE WINDING
H ₂	хо а о х,		Α	H ₁ – H ₃	$X_3 - X_1$			NO
$\int_{\Lambda}^{B} \int_{N}$	3 c b	_	В	H ₂ – H ₁	$X_1 - X_2$		Yy6	ACCESSIBLE NEUTRAL
H ₁ 0 C OH ₃	$x_2^{\mathbf{O}}$		С	H ₃ – H ₂	$X_2 - X_3$	×		NEOTHAL
H ₂	Q^{X_2}		Α	H ₁ – H ₃	$X_1 - X_0$			
BHO	X_0 X_0		В	H ₂ – H ₁	$X_2 - X_0$	V _H •V ₃	YNzn1	
H ₁ 0 C OH ₃	c X3		С	H3 – H2	$X_3 - X_0$	· x		
H ₂	\mathbf{q}^{X_2}		Α	H ₁ – H ₃	$X_1 - X_0$			NO ACCESCIBLE
$_{\Delta}^{B}$ $_{N}$	~ ✓√ b	_	В	H ₂ – H ₁	$X_2 - X_0$		Yzn1	ACCESSIBLE NEUTRAL ON
н ₁ 0 С ОН ₃	$^{\sim}$ $_{\circ}$ $^{\sim}$ $^{\sim}$ $^{\sim}$ $^{\sim}$ $^{\sim}$ $^{\sim}$		С	H3 – H2	X ₃ – X ₀	^		WYE WINDING
H ₂	\mathbf{Q}^{X_2}	H ₃ -H ₂	Α	H ₁ – H ₃	X ₁ – X ₂			NO
B	$x = \begin{bmatrix} a \\ b \end{bmatrix}$	H ₁ -H ₃	В	H ₂ – H ₁	X ₂ – X ₃	$\frac{V_H}{V_V} \cdot \frac{V_3}{2}$	Yz1	ACCESSIBLE NEUTRAL
H ₁ 0 C OH ₃	° C X3	H ₂ -H ₁	С	H ₃ – H ₂	X3 – X1	., -		NEOTRAL
H ₂	, γ ^X 1		Α	H ₁ – H ₃	$X_3 - X_0$			NO
$_{\Delta}^{B} \prod_{N}^{N}$	X_3 Q X_2 Q	_	В	H ₂ – H ₁	$X_1 - X_0$		Yzn5	ACCESSIBLE NEUTRAL ON
H ₁ 0 C OH ₃	$^{^{^{3}}}$ $_{^{\circ}}$ $\overset{^{^{\circ}}}{\overset{^{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}{$		С	H ₃ – H ₂	$X_2 - X_0$	*x		WYE WINDING
	CONFIGURE HIGH-VOLTAGE WINDING (H) HIGH-VOLTAGE WINDING (H) HOW TO HOW	WINDING (H) H2 H2 H2 H2 H2 H3 H4 COH3 X2 D X2 D X3 A COH3 X3 A COH3 X3 A A COH3 A A A A COH3 A A A A A A A A A A A A A	CONFIGURATION HIGH-VOLTAGE WINDING (X) HIGH-VOLTAGE WINDING (X) H2 H2 H2 H2 H2 H3 H4 COH3 X2 A A COH3 X3 A A COH3 A A A A COH3 A A A A A A A A A A A A A	CONFIGURATION HIGH-VOLTAGE WINDING (X) HI	CONFIGURATION HIGH-VOLTAGE WINDING (X) HIGH-VOLTAGE WINDING (X) HIGH-VOLTAGE WINDING (X) HIGH-VOLTAGE WINDING (X) HIGH-VOLTAGE WINDING (X) HIGH-VOLTAGE WINDING (X) HIGH-VOLTAGE WINDING (X) HIGH-VOLTAGE WINDING (X) HIGH-VOLTAGE WINDING (X) HIGH-VOLTAGE WINDING (X) HIGH-VOLTAGE WINDING (X) HIGH-VOLTAGE WINDING (X) HIGH-VOLTAGE WINDING (X) HIGH-VOLTAGE WINDING (X) HIGH-VOLTAGE VOLTAGE VINDING (X) HIGH-VOLTAGE VOLTAGE VINDING (X) HIGH-VOLTAGE VINDING (X) HIGH-H3 H2-H1 H2-H1 H2-H1 H3-H2 H4-H1 H3-H2 H4-H1 H4-H3 H2-H1 H4-H3 H2-H1 H3-H2 H4-H3 H4-H1 H3-H3 H4-H1 H3-H3 H4-H1 H4-H3 H4-H1 H4-H	CONFIGURATION HIGH-VOLTAGE WINDING (X) HIGH-HI X2 - X0 H3 - H2 - H1 - H3 - X1 - X0 H2 - H1 - H3 - X1 - X0 H3 - H2 - H1 - H3 - X1 - X0 H3 - H2 - H1 - H3 - X1 - X0 H3 - H2 - H1 - H3 - X1 - X0 H3 - H2 - H1 - H3 - X1 - X0 H3 - H2 - H1 - H3 - X1 - X0 H3 - H2 - H1 - H3 - X1 - X0 H3 - H2 - H1 - H3 - X1 - X0 H3 - H2 - H1 - H3 - X1 - X0 H3 - H2 - H1 - H3 - X1 - X0 H3 - H2 - H1 - H3 - X1 - X0 H3 - H2 - H1 - H3 - X1 - X0 H3 - H2 - H1 - H3 - X1 - X0 H3 - H2 - H1 - H3 - X1 - X0 H3 - H2 - H1 - H3 - X1 - X0 H3 - H2 - H1 - H3 - X1 - X0 H3 - H2 - H1 - H3 - X1 - X0 H3 - H2 - H1 - H3 - X1 - X0 H3 - H2 - H1 - H3 - X1 - X0 H3 - H1 - H3 - X1 - X0 H4 - H1 - H3 - X1 - X0 H4 - H1 - H3 - X1 - X0 H4 - H1 - H3 - X1 - X0 H1 - H3 - H1 - H3 - X1 - X0 H1 - H3 - H1 - H3 - X1 - X0 H1 - H3 - H1 - H3 - H1 H2 - H1 - H3 - H1 H2 - H1 - H3 - H1 H2 - H1 - H3 - H1 H3 - H1 - H3 - H1 H4 - H1 - H3 - H1 H4 - H1 - H3 - H1 H2 - H1 - H3 - H1 H2 - H1 - H3 - H1 H4 - H1	CONFIGURATION HIGH-VOLTAGE UNIDING (N) DIMPER PHASE VOLTAGE VOLTAGE VINDING (N) VI	HIGH-YOLTAGE LOW-YOLTAGE WINDING (X) VINDING (X)

	TRANSF CONFIGL				WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	H ₂	^X 1	H ₃ -H ₂	Α	H ₁ – H ₃	X3 – X1			NO
28	_A B N	X_3 η b	H ₁ -H ₃	В	H ₂ – H ₁	X ₁ – X ₂	$\frac{V_H}{V_V} \cdot \frac{V_3}{2}$	Yz5	NO ACCESSIBLE
	H ₁ 0 C OH ₃	$_{\circ}$ $_{\circ}$ $_{X_{2}}$	H ₂ -H ₁	С	H3 – H2	X ₂ – X ₃	•x -		NEUTRAL
	H ₂ C	x ₃ 0 ° °		Α	H ₁ – H ₃	$X_0 - X_1$			
66	B H ₀	$b \stackrel{Q^{0}}{\underset{X_{0}}{\longrightarrow}} 0^{1}$	—	В	H ₂ – H ₁	$X_0 - X_2$	V _H • V ₃	YNzn7	
	H ₁ 0 C OH ₃	_{х2} 6		С	H3 – H2	X0 - X3	*x		
	H ₂ C	x₃ o _ c		Α	H ₁ – H ₃	$X_0 - X_1$.,		NO 1005001DL 5
29	B N	$b \bigwedge_{X_0} A^{\Lambda_1}$	—	В	H ₂ – H ₁	$X_0 - X_2$	$\frac{V_{H} \cdot V_{3}}{V_{X}}$	Yzn7	ACCESSIBLE NEUTRAL ON
	H ₁ 0 C OH ₃	_{x2} 6		С	H3 – H2	$X_0 - X_3$			WYE WINDING
	H ₂ C	x₃ o _ °	H ₃ -H ₂	Α	H ₁ – H ₃	$X_2 - X_1$			NO
30	B N	b Λη Λ ^{X1}	H ₁ -H ₃	В	H ₂ – H ₁	$X_3 - X_2$	$\frac{V_H}{V_X} \cdot \frac{V_3}{2}$	Yz7	ACCESSIBLE NEUTRAL
	H ₁ 0 C OH ₃	_{х2} 6	H ₂ -H ₁	С	H3 – H2	$X_1 - X_3$,		HEOTHER
	H ₂ O	x ₂ 0 c		Α	H ₁ – H ₃	X ₀ – X ₃	V Va		
67	B H ₀	b \ \d\x_0 \alpha^3	_	В	H ₂ – H ₁	$X_0 - X_1$	$\frac{V_{H} \cdot V_{\overline{3}}}{V_{X}}$	YNzn11	
	H ₁ 0 C OH ₃	х ₁ 6		С	H ₃ – H ₂	$X_0 - X_2$			
	H ₂ C	x ₂ 0 c		Α	H ₁ – H ₃	X0 - X3			NO
31	$A = \begin{bmatrix} B & A \\ A & A \end{bmatrix}$ N	$b \bigwedge_{X_0} A^{\hat{3}}$	—	В	H ₂ – H ₁	$X_0 - X_1$	$\frac{V_{H} \bullet V_{\overline{3}}}{V_{A}}$	Yzn11	ACCESSIBLE NEUTRAL ON
	H ₁ 0 C OH ₃	x ₁ 6		С	H3 – H2	$X_0 - X_2$	*x		WYE WINDING
	H ₂	x ₂ 0 c	H ₃ -H ₂	Α	H ₁ – H ₃	X ₁ – X ₃	V., V .		NO
32	B N	b η ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	H ₁ -H ₃	В	H ₂ – H ₁	X ₂ – X ₁	$\frac{V_H}{V_X} \cdot \frac{V_3}{2}$	Yz11	ACCESSIBLE NEUTRAL
	н ₁ о с он ₃	_{Х1} О	H ₂ -H ₁	С	H ₃ – H ₂	X3 – X2			
	Q ^H 1 A	X ₁	x ₂ -x ₃	Α	H ₁ – H ₀	$X_1 - X_2$, V _{LI}		
55	C-QH ₀	c a	X ₃ -X ₁	В	H ₂ -H ₀	$X_2 - X_3$	$\frac{2}{3} \cdot \frac{V_H}{V_X}$	ZNd0	
	_{Н3} в он ₂	x ₃ d b x ₂	X ₁ -X ₂	С	H ₃ – H ₀	$X_3 - X_1$			
	$\mathbf{Q}_{A}^{H_{1}}$	X ₁		Α	H ₁ – H ₂	$X_1 - X_2$	V		NO A COSTOCIEL E
56	C N	c/\a	_	В	H ₂ – H ₃	$X_2 - X_3$	$\frac{V_H}{V_X}$	Zd0	ACCESSIBLE NEUTRAL ON
	_{Н3} о _В — о _{Н2}	x_3 b b x_2		С	H3 – H1	$X_3 - X_1$			HIGH VOLTAGE
	Q ^H 1 A	$X_2 \xrightarrow{b} X_3$	x ₂ -x ₃	Α	H ₁ – H ₀	X ₂ – X ₁	_ V		
57	C (H ₀	a\/c	x ₃ -x ₁	В	H ₂ – H ₀	X3 – X2	$\frac{2}{3} \cdot \frac{V_H}{V_X}$	ZNd6	
	H_3 H_2	× ₁	X ₁ -X ₂	С	H3 – H0	$X_1 - X_3$	^		

	TRANSF CONFIGL				WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	\mathbf{q}^{H_2}	а р ^х 1		Α	H ₁ – H ₀	X ₃ – X ₁	V		NO
33	$A \rightarrow B$	Х ₃ о с п	_	В	H ₂ – H ₀	X ₁ – X ₂	$\frac{V_{H}}{V_{x} \cdot V_{\overline{3}}}$	ZNy5	ACCESSIBLE NEUTRAL ON
	H ¹ C → OH ₃	[□] b ^X ₂		С	H3 – H0	X ₂ – X ₃			WYE WINDING
	\mathbf{q}^{H_2}	a م ^x 1	H ₃ -H ₂	Α	H ₁ – H ₃	$X_3 - X_1$	\/\/=		NO
34	A N	X ₃ о с п	H ₁ -H ₃	В	H ₂ – H ₁	$X_1 - X_2$	$\frac{V_H}{V_X} \cdot \frac{V_3}{2}$	Zy5	ACCESSIBLE NEUTRAL
	H ₁	^b ∕ _{X2}	H ₂ -H ₁	С	$H_3 - H_2$	$X_2 - X_3$			
	$^{L_{2}}$	X ₂ Q n		Α	H ₁ – H ₀	$X_1 - X_3$	V		NO
35	$A \rightarrow B$	$a \xrightarrow{c} o x_3$	—	В	H ₂ – H ₀	$X_2 - X_1$	V _H V _{X •} V ₃	ZNy11	ACCESSIBLE NEUTRAL ON
	H_1 $C \rightarrow OH_3$	_{X1} d		С	H3 – H0	X3 - X2			WYE WINDING
	\mathbf{q}^{H_2}	X ₂ Q	H ₃ -H ₂	Α	H ₁ – H ₃	X ₁ – X ₃			NO
36	A N	$a \rightarrow c \circ x_3$	H ₁ -H ₃	В	H ₂ – H ₁	$X_2 - X_1$	$\frac{V_H}{V_X} \cdot \frac{V_3}{2}$	Zy11	ACCESSIBLE NEUTRAL
	H ₁ C → H ₃	_{X1} d	H ₂ -H ₁	С	H3 – H2	X ₃ – X ₂			1120111112
	۶ ^H 2	P ^{x2}		Α	H ₁ – H ₂	$X_1 - X_2$	V		
58	A_B	a b	H ₁ -H ₂				$\frac{V_{H}}{V_{v}}$	T-T 0	
	H ₀ V _{H3}	X_1^0 X_3	$X_{1}^{1} - X_{2}^{2}$	В	H ₁ – H ₃	$X_1 - X_3$	Ŷ	U	
	^Н 2 Q	, o ^{X2}	H ₂ -H ₃	Α	H ₁ – H ₃	$X_1 - X_2$	$\frac{V_H}{V_X} \cdot \frac{V_3}{2}$	T-T	
59	A B L	X ₁ 0 d					l .	30	
	H ₁ 0	^1	x ₁ -x ₂	В	H ₂ – H ₃	X ₁ – X ₃	$\frac{V_H}{V_x} \cdot \frac{2}{V_3}$	Lag	
	H ₂ Q	X2 Q	H ₂ -H ₃	Α	H ₁ – H ₃	$X_1 - X_3$	$\frac{V_H}{V_X} \cdot \frac{V_3}{2}$	T-T	
60	AB	O _{X3}					V _X 2	30	
	H ₁ 0	x ₁ 0 a	x ₁ -x ₃	В	H ₂ – H ₃	$X_2 - X_1$	$\frac{V_X}{V_H} \cdot \frac{2}{V_3}$	Lead	

APPENDIX C – CEI/IEC 60076-1 Transformer Descriptions

	TRANSF CONFIGL				WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	1V Q	2W Q 2U		Α	1U – 1W	2W – 2U			
1	В	c b	_	В	1V – 1U	2U – 2V	U1 U2	Dd6	
	1U A 1W	8 2V		С	1W – 1V	2V – 2W			
	1V Q	2V Q		Α	1U – 1W	2U – 2W			
37	В	b C		В	1V – 1U	2V – 2U	U1 U2	Dd0	
	1U 🗸 A 1W	2U a 2W		С	1W – 1V	2W – 2V			
	1U A	2W		Α	1U – 1V	2W – 2V			
38	C/\A	a\/c		В	1V – 1W	2U – 2W	U1 U2	Dd2	
	1W 0 B 01V	8 2V		С	1W – 1U	2V – 2U			
	1U R	2W Q		Α	1U – 1W	2W – 2U			
39	C/\A	c/\a		В	1V – 1U	2U – 2V	U1 U2	Dd4	
	1W 0 B 1V	2V 6 b 2U		С	1W – 1U	2V – 2W			
	1U Q	X2 Q		Α	1U – 1V	2V – 2W			
40	C/\A	c/\a		В	1V – 1W	2W – 2U	U1 U2	Dd8	
	1WO B 1V	2U 6 b 2W		С	1W – 1U	2U – 2V			
	1U R	2U 0 b 2V		Α	1U – 1V	2U – 2W			
41	C/A	a\/c	_	В	1V – 1W	2V – 2U	U1 U2	Dd10	
	1W 0 B 1V	2W		С	1W – 1U	2W – 2V			
	1U Q) 2U		Α	1U – 1W	2U – 2N			
42	A B	2W O C C b		В	1V – 1U	2V – 2N	U1 • √3 U2	Dyn1	
	1WO C 01V	b _{2V}		С	1W – 1V	2W – 2N			
	1V Q	b) 2V	1W – 1V	Α	1U – 1W	2U – 2V	,,_		NO
2	В	2U O a η	1U – 1W	В	1V – 1U	2V – 2W	U1 •V3 U2	Dy1	ACCESSIBLE NEUTRAL ON
	1U 0 A 1W	° δ _{2W}	1V – 1U	С	1W – 1V	2W – 2U			WYE WINDING
	1V A	2U Q c	1W – 1V	Α	1U – 1W	2U – 2V			NO ACCESSIBLE
61	В	b a 0 2V	1U – 1W	В	1V – 1U	2V – 2W	V _{U1} •V ₃	Dy3	ACCESSIBLE NEUTRAL ON
	1U 0 A 01W	2W d	1V – 1U	С	1W – 1V	2W – 2U			WYE WINDING
	1V Q	2U Q _C		Α	1U – 1W	2N – 2V			
62	ВС	b 2N 2V	—	В	1V – 1U	2N – 2W	U1 • √3 U2	Dyn3	
	1U A 1W	2W o		С	1W – 1V	2N – 2U			

	TRANSF CONFIGU	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	1V Q	p 2U		Α	1U– 1W	2W – 2N			
3	B/C	2W O a 2N	—	В	1V – 1U	2U – 2N	U1 • √3 U2	Dyn5	
	1U A 1W	ိ ် ဥv		С	1W – 1V	2V – 2N	OZ.		
	1V Q	20 م	1W – 1V	Α	1U– 1W	2W – 2V			NO
4	B/C	2W O a	1U-1W	В	1V – 1U	2U – 2W	U1 • V3	Dy5	ACCESSIBLE NEUTRAL ON
	1U 0 A D1W	° ∂ 2∨	1V _ 1U	С	1W – 1V	2V – 2U	9		WYE WINDING
	1V Q	2W Q c		Α	1U – 1W	2N – 2U			
5	В	2N a 0 2U	_	В	1V – 1U	2N –2V	U1 • V3	Dyn7	
	1U	_{2V} o b		С	1W – 1V	2N-2W			
	1V O	2W Q c	1W-1V	Α	1U – 1W	2W – 2U			NO
6	В	a 2U	1U-1W	В	1V – 1U	2U – 2V	U1 • [√] 3	Dy7	ACCESSIBLE NEUTRAL ON
	1U A 1W	2V o p	1V-1U	С	1W – 1V	2V – 2W			WYE WINDING
	1V O	, p 2W	1W-1V	Α	1U– 1W	2V – 2U			NO
63	ВСС	2V O a 2N	1U–1W	В	1V – 1U	2W – 2V	<u>U1 •√3</u> U2	Dy9	ACCESSIBLE NEUTRAL ON
	1U 0 A 1W	c b 2U	1V-1U	С	1W – 1V	2U – 2W	02		WYE WINDING
	1V Q	Q 2W		Α	1U– 1W	2V – 2N			
64	ВСС	2V o a o 2N	—	В	1V – 1U	2W – 2N	<u>U1 •√3</u> U2	Dyn9	
	1U O A	c 2 0		С	1W – 1V	2U – 2N	02		
	1V O	2V Q c		Α	1U – 1W	2N – 2W			
7	ВСС	2N a O 2W		В	1V – 1U	2N-2U	<u>U1 •√3</u> U2	Dyn11	
	1U 0 A 1W	2U o b		С	1W – 1V	2N – 2V	02		
	1V Q	2V Q c	1W-1V	Α	1U – 1W	2V – 2W			NO
8	ВСС	a 0 2W	1U-1W	В	1V – 1U	2W – 2U	U1 • ^V 3 U2	Dy11	ACCESSIBLE NEUTRAL ON
	1U 🗸 🗡 1W	2U o ′ b	1V-1U	С	1W – 1V	2U – 2V			WYE WINDING
	1U O	2U Q	1V-1W	Α	1U – 1V	2U – 2N			
45	C/A	c 2N a	1W-1U	В	1V – 1W	2V – 2N	3 • U1 2 U2	Dzn0	
	1W O B 1V	2W b 2V	1U-1V	С	1W – 1U	2W – 2N			
	1U Q	b 2U 2U 5	1V-1W	Α	1U– 1V	2N – 2V			
46	C/A	$_{a}$ $_{2N}$ $_{c}$	1W-1U	В	1V – 1W	2N – 2W	3 • U1 U2	Dzn2	
	1W 0 B 1V	b _{2V}	1U-1V	С	1W – 1U	2N – 2U			

	TRANSF CONFIGL				WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	1U Q	b 2U		Α	1U – 1V	2W – 2V	114		NO
47	C/\A	2W c	—	В	1V – 1W	2U – 2W	U1 U2	Dz2	ACCESSIBLE NEUTRAL
	1W d B 0 1V	ბ ₂v		С	1W – 1U	2V – 2U			
	1U A	a 2W	1V_1W	Α	1U – 1V	2W – 2N	3 U1		
48	C/\A	2V >2N b	1W-1U	В	1V – 1W	2U – 2N	2 U2	Dzn4	
	1WO B 1V	O → _c O _{2U}	1U-1V	С	1W – 1U	2V – 2N			
	1U Q	2 2W		Α	1U – 1V	2W – 2U			NO
49	C/\A	a b	—	В	1V – 1W	2U – 2V	U1 U2	Dz4	ACCESSIBLE NEUTRAL
	1W 0 B 1∨	ο—, δ 2U		С	1W – 1U	2V – 2W			112011112
	1V R	2V Q		Α	1U – 1W	2U – 2W	U1		NO
9	B/C	a η b $_{2W}$	—	В	1V – 1U	2V – 2U	U2	Dz0	ACCESSIBLE NEUTRAL
	1U d A b 1W	8		С	1W – 1V	2W – 2V			
	1V A	c 2U		Α	1U – 1W	2W – 2U			NO
10	B/C	bηa		В	1V – 1U	2U – 2V	U1 U2	Dz6	ACCESSIBLE NEUTRAL
	1U 0 A D 1W	∂ 2V		С	1W – 1V	2V – 2W			
	1U Q	ob 2W	1V-1W	Α	1U – 1V	2N – 2U	3 U1		
50	C/A	2V 2N c	1W –1 U	В	1V – 1W	2N – 2V	3 · U1 2 · U2	Dzn6	
	1W 0 B 1V	b 2U	1U-1V	С	1W – 1U	2N – 2W			
	1U Q	2V Q a	1V-1W	Α	1U – 1V	2V – 2N			
51	C/A	C2N	1W-1U	В	1V – 1W	2W – 2N	3 · U1 2 U2	Dzn8	
	1WO B 1V	0	1U-1V	С	1W – 1U	2U – 2N			
	1U A	2V Q a		Α	1U– 1V	2V – 2W			NO
52	C/\A	°—•		В	1V – 1W	2W – 2U	U1 U2	Dz8	ACCESSIBLE NEUTRAL
	1W 0 B 1V	ZU b 2W		С	1W – 1U	2U – 2V			772077772
	1U Q	2U c2V	1V-1W	Α	1U – 1V	2N – 2W			
53	C/A	b 2N	1W-1U	В	1V – 1W	2N – 2U	3 · U1 / U2	Dzn10	
	1WO B 1V	2W o	1U-1V	С	1W – 1U	2N – 2V			
	1U Q	2U C O 2V		Α	1U – 1V	2U – 2W			NO
54	C/\A	b	—	В	1V – 1W	2V- 2U	U1 U2	Dz10	ACCESSIBLE NEUTRAL
	1W 0 B 1V	2W o		С	1W –1U	2W – 2V			HEOTIAL

	TRANSF CONFIGU	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	1V O B	2W C		Α	1U – 1N	2V – 2U			
11	A A IN	b 2U	_	В	1V – 1N	2W – 2V	U1 U2 • V3	YNd7	
	1U O C O1W	2V 0 a		С	1W – 1N	2U – 2W			
	1V _ Q	a 2U		Α	1U – 1N	2U – 2V			
44	A DIN	2W C b	_	В	1V – 1N	2V – 2W	U1 U2 •V3	YNd1	
	1U 0 C 01W	° √ 2∨		С	1W – 1N	2W – 2U			
	1V O	a 2V	1W-1V	Α	1U – 1W	2U – 2V			NO
12	B B	2U b	1U-1W	В	1V – 1U	2V – 2W	U1 V3 U2 2	Yd1	ACCESSIBLE NEUTRAL ON
	1U O C O 1W	° √ 2W	1V-1U	С	1W – 1V	2W – 2U			WYE WINDING
	17	a 2U		Α	1U– 1N	2W – 2U			
13	BO _{1N}	2W b	_	В	1V – 1N	2U – 2V	U1 U2 •√3	YNd5	
	1UO C 01W	c 2V		С	1W – 1N	2V – 2W			
	1V O	a 7 2U	1W-1V	Α	1U – 1W	2W – 2U			NO
14	B	2WO b	1U-1W	В	1V – 1U	2U – 2V	$\frac{\text{U1}}{\text{U2}} \cdot \frac{\text{V}_3}{2}$	Yd5	ACCESSIBLE NEUTRAL ON
	1U O C O 1W	c 2V	1V-1U	С	1W – 1V	2V – 2W			WYE WINDING
	1V	2W Q	1W-1V	Α	1U – 1W	2V – 2U			NO
15	B	b 2U	1U-1W	В	1V – 1U	2W – 2V	U1 V3 2	Yd7	ACCESSIBLE NEUTRAL ON
	1U O C O1W	2V a	1V-1U	С	1W – 1V	2U – 2W	02 2		WYE WINDING
	1V	2V Q		Α	1U– 1N	2U – 2W			
16	BO _{1N}	b 2W		В	1V – 1N	2V-2U	U1 U2 •V3	YNd11	
	1U O C O1W	2U a		С	1W – 1N	2W – 2V			
	1V	2V c	1W-1V	Α	1U– 1W	2U – 2W			NO
17	B	b 2W	1U-1W	В	1V – 1U	2V – 2U	U1 V3 2	Yd11	ACCESSIBLE NEUTRAL ON
	1U O C O 1W	2U a	1V-1U	С	1W – 1V	2W – 2V	02 2		WYE WINDING
	1V	2W Q a O 2U		Α	1U – 1N	2N – 2U			
18	B 1N	c b 2N		В	1V – 1N	2N – 2V	U1 U2	YNyn6	
	1U O C 0 1W	Ó 2V		С	1W – 1N	2N – 2W			
	1V	2V	1V-1N	Α	1U – 1N	2U – 2V			NO
19	B 1N	b	1W-1N	В	1V – 1N	2V – 2W	U1 U2	YNy0	ACCESSIBLE NEUTRAL ON
	1U O C O 1W	2U 0 C 0 2W	1U-1N	С	1W – 1N	2W – 2U	52		LOW VOLTAGE WINDING

	TRANSF CONFIGL	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	1V O	2V Q	2W-2N	Α	1U – 1W	2U – 2N			NO ACCESSIBLE
20	B A	b 2N	2U-2N	В	1V – 1U	2V- 2N	U1 U2	Yyn0	NEUTRAL ON
	1U O C O1W	2U 0 C 2W	2V-2N	С	1W – 1V	2W – 2N			HIGH VOLTAGE WINDING
	O C	2V O		Α	1U – 1N	2U – 2W			
43	B IN	a D 2N	—	В	1V – 1N	2V – 2N	U1 U2	YNyn0	
	1WO C 01V	2U 0 0 2W		С	1W – 1N	2W – 2N			
	1V O	2V Q		Α	1U – 1W	2U – 2W			NO
21	B	b a	_	В	1V – 1U	2V – 2U	U1 U2	Yy0	ACCESSIBLE NEUTRAL
	1U O C O1W	2U ° 2W		С	1W – 1V	2W – 2V			N2011IX
	1V O	2WO a 0 2U	1V-1N	Α	1U – 1N	2V – 2U			NO ACCESSIBLE
22	B 1N	c b	1W-1N	В	1V – 1N	2W – 2V	U1 U2	YNy6	NEUTRAL ON
	1U O C O 1W	O 2V	1U-1N	C	1W – 1N	2U – 2W			LOW VOLTAGE WINDING
	1V O	2W Q a 0 2U	2W-2N	Α	1U – 1W	2N – 2U			NO ACCESSIBLE
23	$A = \begin{bmatrix} B \\ A \end{bmatrix}$ N	c b 2N	2U-2N	В	1V – 1U	2N – 2V	U1 U2	Yyn6	NEUTRAL ON HIGH VOLTAGE
	1U O C O1W	O 2V	2V-2N	С	1W – 1V	2N – 2W			WINDING
	17	2W Q a 02U		Α	1U – 1W	2W – 2U			NO
24	B A	c b	—	В	1V – 1U	2U – 2V	U1 U2	Yy6	ACCESSIBLE NEUTRAL
	1UO C 01W	ó 2V		С	1W – 1V	2V – 2W			
	1V Q	Q 2V		Α	1U – 1W	2U – 2N			
65	B 1N	a b	_	В	1V – 1U	2V – 2N	$\frac{V_{\text{H}} \cdot V_{\overline{3}}}{V_{\text{X}}}$	YNzn1	
	1U O C 01W	c 2W		С	1W – 1V	2W – 2N	,		
	1V O	a 0.2V		Α	1U – 1W	2U – 2N	,,_		NO ACCESSIBLE
25	B B	_{2U} _{2N} _b	—	В	1V – 1U	2V – 2N	U1 •√3 U2	Yzn1	NEUTRAL ON WYE WINDING
	1U O C O1W	c 2W		С	1W – 1V	2W – 2N			WTE WINDING
	1V O	a O 2V	1W-1V	Α	1U – 1W	2U – 2V			NO
26	B A	b 2U	1U-1W	В	1V– 1U	2V – 2W	$\frac{\text{U1}}{\text{U2}} \cdot \frac{\text{V}_{\overline{3}}}{2}$	Yz1	ACCESSIBLE NEUTRAL
	1U O C O 1W	° 2W	1V-1U	С	1W – 1V	2W – 2U			1120711712
	1V Q	Q 2U		Α	1U – 1W	2W – 2N			NO 100500IDLE
27	B A	b 2W 2N	—	В	1V – 1U	2U – 2N	U1 •√3 U2	Yzn5	ACCESSIBLE NEUTRAL ON
	1U O C O 1W	° 2V		С	1W – 1V	2V – 2N			WYE WINDING

	TRANSF CONFIGL				WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	1V O	a Q 2U	1W-1V	Α	1U – 1W	2W – 2U			NO
28	B A	2W 0 b	1U-1W	В	1V – 1U	2U – 2V	U1 V3 2	Yz5	NO ACCESSIBLE
	1U O C O1W	c 2V	1V-1U	С	1W – 1V	2V – 2W			NEUTRAL
	1V O	2W Q C		Α	1U – 1W	2N – 2U			
66	B 1N	b X ₀ a 2U	—	В	1V – 1U	2N – 2V	$\frac{V_H}{V_x} \bullet \frac{V_3}{}$	YNzn7	
	1U O C O1W	2V d		С	1W – 1V	2N – 2W	vx .		
	17	2W 🔾 c		Α	1U – 1W	2N – 2U			NO
29	B N	b 20 20	—	В	1V – 1U	2N – 2V	U1 •√3 U2	Yzn7	ACCESSIBLE NEUTRAL ON
	1U O C O1W	2V d		С	1W – 1V	2N – 2W			WYE WINDING
	1V O	2W Q _C	1W-1V	Α	1U– 1W	2V – 2U			NO
30	B	b 2U	1U-1W	В	1V – 1U	2W – 2V	U1 V3	Yz7	ACCESSIBLE NEUTRAL
	1UO C 01W	2V d	1V-1U	С	1W – 1V	2U – 2W			NEOTHAL
	1V O	2VQ_c		Α	1U – 1W	2N – 2W	\ \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		
67	B 1N	b 2N 2W	_	В	1V – 1U	2N – 2U	$\frac{V_{\text{H}} \bullet V_{\overline{3}}}{V_{\text{X}}}$	YNzn11	
	1U O C O1W	20 0		С	1W – 1V	2N – 2V			
	1V C	2V Q C		Α	1U – 1W	2N – 2W			NO
31	B A	b 2N 20 2W	—	В	1V – 1U	2N – 2U	<u>U1 •√3</u> U2	Yzn11	ACCESSIBLE NEUTRAL ON
	1U O C O1W	2U 6		С	1W – 1V	2N – 2V	02		WYE WINDING
	1V O	2V Q C	1W-1V	Α	1U – 1W	2U – 2W	111 Va		NO
32	B N	b a 2W	1U-1W	В	1V – 1U	2V – 2U	U1 V3 2	Yz11	ACCESSIBLE NEUTRAL
	1UO C 01W	20 6	1V-1U	С	1W – 1V	2W – 2V			
	1∪ Q _A	2U R	1V-1W	Α	1U – 1N	2U- 2V			
55	C_Q1N	c/\a	1W-1U	В	1V – 1N	2V – 2W	3 U2	ZNd0	
	o B → 0 1V	2W d b 2V	1U-1V	С	1W – 1N	2W – 2U			
	1U Q ₄	2U R		Α	1U – 1V	2U – 2V			NO
56	<u>څ</u>	c a	_	В	1V – 1W	2V – 2W	U1 U2	Zd0	ACCESSIBLE NEUTRAL ON
	1WO B 01V	2W b 2V		С	1W – 1U	2W – 2U			HIGH VOLTAGE
	1U Q _A	2VQ b 2W	1V-1W	Α	1U – 1N	2V – 2U			
57	C 1N	a c	1W-1U	В	1V – 1N	2W – 2V	2 · U1 / U2	ZNd6	
	1WO B 1V	O 2U	1U-1V	С	1W – 1N	2U – 2W			

	TRANSF CONFIGU	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	1V Q	a P 2U		Α	1U – 1N	2W – 2U			NO
33	A 1N	2W O C	_	В	1V – 1N	2U – 2V	U1 U2 •√3	ZNy5	ACCESSIBLE NEUTRAL ON
	d C 0 1W	b \ 2V		С	1W – 1N	2V – 2W	02 * 0		WYE WINDING
	1V Q _B	a / 2U	1W-1V	Α	1U – 1W	2W – 2U			NO
34	^_	2W O C	1U-1W	В	1V – 1U	2U – 2V	U1 V3 2	Zy5	ACCESSIBLE NEUTRAL
	0 C 0 1W	^b b 2∨	1V-1U	С	1W – 1V	2V – 2W			
	1V Q _B	2V Q		Α	1U – 1N	2U – 2W			NO
35	A(1N	a c o 2W	_	В	1V – 1N	2V – 2U	U1 U2 • V3	ZNy11	ACCESSIBLE NEUTRAL ON
	0 C 0 1W	2U ර		С	1W – 1N	2W – 2V			WYE WINDING
	1∨ Q _B	2V Q	1W-1V	Α	1U – 1W	2U – 2W			NO
36	^_	a c o 2W	1U-1W	В	1V – 1U	2V – 2U	$\frac{\text{U1}}{\text{U2}} \cdot \frac{\text{V}_3}{2}$	Zy11	ACCESSIBLE NEUTRAL
	0 C 01W	ර 2U	1V-1U	С	1W – 1V	2W – 2V			
) 1V	9 2V		Α	1U – 1V	2U – 2V		+ +	
58	B	å b					U1 U2	T-T 0	
	0 1W	O _{2W}	1U-1V 2U-2V	В	1U – 1W	2U – 2W			
	1V Q _	a 0 2V	1V-1W	Α	1U – 1W	2U – 2V	<u>U1</u> • <u>V3</u> <u>2</u>	T-T	
59	AB	b						30	
	0 0 1U 1W	2U 2W	2U-2V	В	1V – 1W	2U – 2W	$\frac{\text{U1}}{\text{U2}} \frac{2}{\text{V}_3}$	Lag	
	1 V Q 1	Q 2V b 2W	1V-1W	Α	1U – 1W	2U – 2W	<u>U1</u> • <u>V3</u> U2• <u>2</u>	T-T	
60	AB							30	
	δ 1U 1W	2U o a	2U-2W	В	1V – 1W	2V – 2U	U1 • 2 U2 V3	Lead	

APPENDIX D – Australian Std.2374 Transformer Descriptions

	TRANSF CONFIGL				WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	Β Ω	c		Α	A – C	c – a			
1	В	b\\/c		В	B – A	a – b	HV LV	Dd6	
	$A \stackrel{\frown}{\longrightarrow} C$	b		С	C – B	b – c			
	В	b Q		Α	A – C	a – c	шу		
37	B/C	b C		В	B – A	b – a	HV LV	Dd0	
	$A \circ A \circ C$	а о с		С	C – B	c – b			
	A O	c Q b a		Α	A – B	c – b	HV		
38	C/A	a c		В	B – C	a – c	LV	Dd2	
	с о <u>в</u> В	о b		С	C – A	b – a			
	A Q	c Ω		Α	A – B	c – a			
39	C/\A	c/\a		В	B – C	a – b	LV	Dd4	
	с о <u>в</u> в	$b \stackrel{b}{ \longrightarrow} a$		С	C – A	b – c			
	Α Ω	bΩ		Α	A – B	b – c	шл		
40	C/A	c/\a		В	B – C	c – a	HV LV	Dd8	
	с о в	а о b с		С	C – A	a – b			
	AΩ	$a \stackrel{b}{\frown} b$		Α	A – B	a – c			
41	C/\A	a\\c		В	B-C	b – a	LV	Dd10	
	с о В В	о с		С	C – A	c – b			
	ΑQ	ρ ^a		Α	A – C	a – η			
42	$A \nearrow B$	$c \circ c \circ$		В	B – A	b −η	HV •√3	Dyn1	
	со С В	ծ _b		С	C – B	c – η			
	В	<i>b</i> / D b	C – B	Α	A – C	a – c			NO
2	В	a O <u></u>	A – C	В	B – A	b – a	$\frac{\text{HV } \bullet \sqrt{3}}{\text{LV}}$	Dy1	ACCESSIBLE NEUTRAL ON
	$A \circ A \circ C$	ِ ک و	B-A	С	C – B	c-b			WYE WINDING
	вα	a Q c	C – B	Α	A – C	a – b	.,		NO
61	B/C	_b	A – C	В	B – A	b – c	$\frac{V_{H} \cdot V_{3}}{V_{X}}$	Dy3	ACCESSIBLE NEUTRAL ON
	$A \circ A \circ C$	င္ဝ	B – A	С	C – B	c – a	,,		WYE WINDING
	вΩ	а q _с		Α	A – C	$\eta-b$			
62	B C	$b \rightarrow \frac{a}{\eta} \circ \mathbf{b}$	_	В	B – A	η – с	HV •√3	Dyn3	
	A O A C	^b /η ο 2		С	C – B	η – a			

	TRANSF CONFIGL				WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	В	_h $ ho$ a		Α	A – C	c – η			
3	B C	$\circ \circ \stackrel{a}{=} \circ \eta$	_	В	B – A	a – η	$\frac{\text{HV } \bullet \text{V}_3}{\text{LV}}$	Dyn5	
	$A \circ A \circ C$, р в		С	C – B	$b\!-\!\eta$	LV		
	в Q	_b ρ a	C – B	Α	A – C	c – b			NO
4	B C	c O _ a _ 0	A – C	В	B – A	a – c	HV • V3	Dy5	ACCESSIBLE NEUTRAL ON
	A 0 − A C	, р Р	B – A	С	C – B	b – a			WYE WINDING
	в 2	° Q _c		Α	A – C	η – a			
5	B/C	$\int_{h}^{\frac{a}{h}}$ o a		В	B – A	η – b	HV •V3	Dyn7	
	$A \leftarrow A \rightarrow C$	ьδ°		С	C – B	η– c			
	Β Ω	• <i>٩</i>	С-В	Α	A – C	c – a	,_		NO
6	B C	η	A-C	В	B – A	a – b	$\frac{\text{HV } \bullet \sqrt{3}}{\text{LV}}$	Dy7	ACCESSIBLE NEUTRAL ON
	$A \circ A \circ C$	_b oo ⁵	B – A	С	C – B	b – c			WYE WINDING
	В Q	ه م	С-В	Α	B-C	b – a			NO
63	В	ь 0	A – C	В	B – A	c – b	$\frac{\text{HV } \bullet \text{V}_3}{\text{LV}}$	Dy9	ACCESSIBLE NEUTRAL ON
	A O A C	်ဝဲa	B – A	С	C – B	a – c	LV		WYE WINDING
	в Q	°ور		Α	A – C	b – η			
64	B C	ьο <u></u> σ∜η	_	В	B – A	c – η	$\frac{\text{HV } \bullet \sqrt{3}}{\text{LV}}$	Dyn9	
	$A \stackrel{\frown}{\longrightarrow} C$	́ b а		С	C – B	a – η			
	в Q	b Q _C		Α	A – C	η-с			
7	B C) a o c		В	B – A	η – a	HV • V3	Dyn11	
	A 0 ← A C	a of "		С	C – B	η– b			
	в Я	ь Q _с	С-В	Α	A – C	b – c	HV •√3		NO
8	В	$\eta = \frac{a}{b} \circ \circ$	A – C	В	B – A	c – a	LV • v3	Dy11	ACCESSIBLE NEUTRAL ON
	$A \stackrel{\frown}{\longrightarrow} C$	a o b	B – A	С	C – B	a – b			WYE WINDING
	A Q	a Q	B-C	Α	A – B	a – η			
45	C/\A	د/—﴿ h	C – A	В	B-C	$b - \eta$	$\frac{3}{2} \cdot \frac{\text{HV}}{\text{LV}}$	Dzn0	
	с о в	∘d }_oь	A – B	С	C – A	c – η			
	AΩ	د <u>٥</u> ٥ ٥ ع	B-C	C	A – B	η – b			
46	C/\A	η^{c}	C – A	Α	B – C	η – c	$\frac{3}{2} \cdot \frac{HV}{LV}$	Dzn2	
	с о в	9 ه	A – B	В	C – A	η– a			

	TRANSF CONFIGL	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
47	C A B	собра	_	A B C	A – B B – C C – A	c - b a - c b - a	HV LV	Dz2	NO ACCESSIBLE NEUTRAL
48	$C \xrightarrow{A} B B$	b ο c a	B – C C – A A – B	A B C	A – B B – C C – A	$c - \eta$ $a - \eta$ $b - \eta$	3 HV 2 LV	Dzn4	
49	C	b O c a	_	A B C	A – B B – C C – A	c – a a – b b – c	HV LV	Dz4	NO ACCESSIBLE NEUTRAL
9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a o c o c	_	A B C	A – C B – A C – B	a-c b-a c-b	HV LV	Dz0	NO ACCESSIBLE NEUTRAL
10	$A \xrightarrow{B} C$	c O a		A B C	A – C B – A C – B	c – a a – b b – c	HV LV	Dz6	NO ACCESSIBLE NEUTRAL
50	C A B B	b O o o o o o o o o o o o o o o o o o o	B – C C – A A – B	A B C	A – B B – C C – A	η – a η – b η – c	3 • HV LV	Dzn6	
51	C B B	b Q a q	B – C C – A A – B	A B C	A – B B – C C – A	b-η c-η a-η	$\frac{3}{2} \bullet \frac{HV}{LV}$	Dzn8	
52	c o B B	b 0 c		A B C	A – B B – C C – A	b-c c-a a-b	HV	Dz8	NO ACCESSIBLE NEUTRAL
53	C B B	a c o b	B – C C – A A – B	A B C	A – B B – C C – A	η – c η – a η – b	3 • HV LV	Dzn10	
54	C B B	a O C O b	_	А В С	A – B B – C C – A	a – c b – a c – b	HV LV	Dz10	NO ACCESSIBLE NEUTRAL

	TRANSF CONFIGU	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
11	B B B N A O C O C	c b a a		A B C	A – N B – N C – N	b – a c – b a – c	HV LV • √3	YNd7	
44	B B N C C C	a db b c c	_	А В С	A – N B – N C – N	a - b b - c c - a	HV LV •V3	YNd1	
12	B B C C C	a c b	C – B A – C B – A	А В С	A – C B – A C – B	a - b b - c c - a	HV \(\frac{\sqrt{3}}{2} \)	Yd1	NO ACCESSIBLE NEUTRAL ON WYE WINDING
13	B B N C C C	c c b		A B C	A – N B – N C – N	c – a a – b b – c	HV LV • \(\sigma_3\)	YNd5	
14	B C C	c c b	C – B A – C B – A	A B C	A – C B – A C – B	c-a a-b b-c	$\frac{\text{HV}}{\text{LV}} \cdot \frac{\text{V}_3}{2}$	Yd5	NO ACCESSIBLE NEUTRAL ON WYE WINDING
15	B O C C	c b c a	C – B A – C B – A	A B C	A – C B – A C – B	b-a c-b a-c	$\frac{\text{HV}}{\text{LV}} \cdot \frac{\sqrt{3}}{2}$	Yd7	NO ACCESSIBLE NEUTRAL ON WYE WINDING
16	B O N C C	b c c	_	A B C	A– N B – N C – N	a-c b-a c-b	HV LV ∙√3	YNd11	
17	B B C C C	b c c	C – B A – C B – A	A B C	A – C B – A C – B	a – c b – a c – b	$\frac{\text{HV}}{\text{LV}} \cdot \frac{\sqrt{3}}{2}$	Yd11	NO ACCESSIBLE NEUTRAL ON WYE WINDING
18	B B N C C	c O a β b h	_	A B C	A – N B – N C – N	η – a η – b η – c	HV LV	YNyn6	
19	B B N C C	b b a a c o c	B – N C – N A – N	A B C	A – N B – N C – N	a-b b-c c-a	HV LV	YNy0	NO ACCESSIBLE NEUTRAL ON LOW VOLTAGE WINDING

	TRANSF CONFIGU	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
20	B C C	b h m	c – h a – h b – h	A B C	A – C B – C C – B	a-η b-η c-η	HV LV	Yyn0	NO ACCESSIBLE NEUTRAL ON HIGH VOLTAGE WINDING
43	B O C C	b n a o c	_	A B C	A – N B – N C – N	$\begin{array}{c} a-\eta \\ b-\eta \\ c-\eta \end{array}$	HV LV	YNyn0	
21	B B C C	b b a a c o c		A B C	A – C B – A C – B	a – c b – a c – b	HV LV	Yy0	NO ACCESSIBLE NEUTRAL
22	B N C C	c o a o a	B – N C – N A – N	А В С	A – N B – N C – N	b – a c – b a – c	HV LV	YNy6	NO ACCESSIBLE NEUTRAL ON LOW VOLTAGE WINDING
23	B M A O C C	o a a b f	c-h $a-h$ $b-h$	A B C	A – C B – A C – B	η – a η – b η – c	HV LV	Yyn6	NO ACCESSIBLE NEUTRAL ON HIGH VOLTAGE WINDING
24	B C C	c o a b b b	_	A B C	A – C B – A C – B	c – a a – b b – c	HV LV	Yy6	NO ACCESSIBLE NEUTRAL
65	B O C C	a o o o o	_	A B C	A – C B – A C – B	a-η b-η c-η	$\frac{V_{H} \bullet V_{\overline{3}}}{V_{X}}$	YNzn1	
25	B O C C	a O b b		A B C	A – C B – A C – B	a-η b-η c-η	V _{H •} √3 LV	Yzn1	NO ACCESSIBLE NEUTRAL ON WYE WINDING
26	B B B C C C	a O b b	C – B A – C B – A	A B C	A – C B – A C – B	a – b b – c c – a	$\frac{\text{HV}}{\text{LV}} \cdot \frac{\sqrt{3}}{2}$	Yz1	NO ACCESSIBLE NEUTRAL
27	B B B C C C	co n b	_	А В С	A – C B – A C – B	c – η a – η b – η	HV •V₃ LV	Yzn5	NO ACCESSIBLE NEUTRAL ON WYE WINDING

	TRANSF CONFIGL	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	В	Q a	C – B	Α	A – C	c – a			NO
28	$A \longrightarrow B$	6 O P	A-C	В	B – A	a – b	$\frac{\text{HV}}{\text{LV}} \cdot \frac{\text{V}_3}{2}$	Yz5	ACCESSIBLE NEUTRAL
	A 0 C 0 C	٩٥٠	B – A	С	C – B	b – c			1120 111112
	B Q	ه مي د		Α	A – C	η – a			
66	$A \longrightarrow N$		_	В	B – A	η – b	$\frac{V_H}{V_X} \cdot \frac{V_3}{}$	YNzn7	
ш	AO COC	ьО		С	C – B	η – c			
	В	°°		Α	A – C	η – a	HV ∙ √3		NO ACCESSIBLE
29	A B		-	В	B – A	η-b	LV	Yzn7	NEUTRAL ON WYE WINDING
	AO COC	ьО		С	C – B	η– c			
	в Р .		C-B	Α	A-C	b – a	HV V3	\ \ \ -7	NO 1 0 0 5 0 0 1 1 1 5
30	A O C O C	b a a	A-C	В	B – A	c – b	$\frac{\text{HV}}{\text{LV}} \bullet \frac{\sqrt{3}}{2}$	Yz7	ACCESSIBLE NEUTRAL
		٥٥.	B – A	С	C – B	a – c			
	B O R	ή		A	A – C	η – c	V _{H •} V ₃	Yzn11	
67	A CA			B C	B – A C – B	η-a	V _X	121111	
	В					η-b			
0.1	B B	ήρ		A	A – C B – A	η – c η – a	HV • V3	Yz11	NO ACCESSIBLE
31	A O C O C	a o		B C	C – B	η- a η- b	LV		NEUTRAL ON WYE WINDING
	В	b Q	C – B	A	A – C	a – c			
32	B	٥٠	A-C	В	B – A	b – a	$\frac{\text{HV}}{\text{LV}} \cdot \frac{\text{V}_3}{2}$	Yz11	NO ACCESSIBLE
02	A O C O C	a o	B – A	С	C – B	c – b	LV Z		NEUTRAL
	A O	a	b – c	Α	A – N	a – b			
55	C	c a	c – a	В	B – N	b – c	$\frac{2}{3} \cdot \frac{HV}{LV}$	ZNd0	
	со в ов	с о <u></u> ь ь	a – b	С	C – N	c – a	0 2,		
	A Q	a O		Α	A – B	a – b			NO
56	\mathcal{L}	c \ a	_	В	B-C	b – c	HV LV	Zd0	ACCESSIBLE NEUTRAL ON
	со в	c 0 b		С	C – A	c – a			HIGH VOLTAGE
	A	b	b – c	Α	A – N	b – a			
57	C N	a\sqrt{c}	c – a	В	B – N	c – b	LV	ZNd6	
	со вов	Ö a	a – b	С	C – N	a – c			

	TRANSF CONFIGL	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	В	Q a	C – B	Α	A – C	c – a			NO
28	$A \stackrel{B}{\blacktriangle}$	6 O O O	A-C	В	B – A	a – b	$\frac{\text{HV}}{\text{LV}} \cdot \frac{\text{V}_3}{2}$	Yz5	ACCESSIBLE NEUTRAL
	A 0 C 0 C	, Др	B – A	С	C – B	b – c			NEOTIAL
	В	ه مې		Α	A – C	η – a			
66	$A \longrightarrow N$		_	В	B – A	η-b	$\frac{V_H}{V_x} \cdot \frac{V_3}{}$	YNzn7	
Ш	AO COC	ьЬ		С	C – B	η – c			
	в О	° Q _ r		Α	A – C	η – a	HV ∙ √3		NO ACCESSIBLE
29	A B		_	В	B – A	η-b	LV	Yzn7	NEUTRAL ON WYE WINDING
	AO COC	ьÓ		С	C – B	η– c			
	в О		C-B	<i>A</i>	A– C	b – a	⊓^ ∧a	\ , _	NO
30	A B	b a a	A-C	В	B – A	c – b	$\frac{\text{HV}}{\text{LV}} \cdot \frac{\sqrt{3}}{2}$	Yz7	ACCESSIBLE NEUTRAL
	AO € O C	_	B – A	С	C – B	a – c			
	В О В I	η		A	A – C	η – c	V _{H •} V ₃ / V _x	Vanii	
67	A N	b a a	_	В	B – A C – B	η – a	V _X	Yzn11	
	AO COC			С		η– b			
	В О В	ьо ln		A	A – C	η – c	Va	Yz11	NO ACCESSIBLE
31	A O C O C		_	В	B – A	η-a	HV • √3 LV	1211	NEUTRAL ON WYE WINDING
		a Ó	0 0	C	C – B	η– b			
	В О В I	b 0 c	C – B	A	A – C	a – c b – a	$\frac{\text{HV}}{\text{LV}} \bullet \frac{\text{V}_3}{2}$	Yz11	NO ACCESSIBLE
32	A O C O C	b a c	A-C	B C	B – A C – B	c-b	LV 2	'-''	NEUTRAL
	Α	а	B – A		A – N	a – b			
55	\mathcal{S}^A	c A a		A	B-N	b – c	2 • HV	ZNd0	
	$C \circ \bigcup_{\beta}^{C} N \circ B$	с о в	c-a a-b	B C	C – N	c – a	3 LV	2.1400	
	A	a	a-b	A	A – B	a – b			
56	A	$c \bigwedge_{a}$		В	B – C	b – c	HV	Zd0	NO ACCESSIBLE
30	со В В	c o b		C	C – A	c – a	LV		NEUTRAL ON HIGH VOLTAGE
	A O	b Q b Q c	b – c	A	A – N	b – a			
57	$C \longrightarrow A$	$a = \int_{c}$	c – a	В	B – N	c – b	HV LV	ZNd6	
	с о В N В В	a	a – b	С	C – N	a – c	LV		

1520 S. Hellman Ave • Ontario, CA 91761 • USA

Phone: 909-923-9390 • Fax: 909-923-9391

www.vanguard-instruments.com