TRF-100

THREE-PHASE TRANSFORMER TURNS-RATIO METER

USER'S MANUAL

Vanguard Instruments Company, Inc.

1520 S. Hellman Ave. Ontario, California 91761, USA

TEL: (909) 923-9390 FAX: (909) 923-9391 April, 2016 Revision 1.0

SAFETY SUMMARY

FOLLOW EXACT OPERATING PROCEDURES

Any deviation from procedures described in this User's Manual may create one or more safety hazards, damage the TRF-100, damage the test transformer, or cause errors in the test results. Vanguard Instruments Company, Inc. assumes no liability for unsafe or improper use of the TRF-100. The following safety precautions must be observed during all phases of test setup, test hookups, testing, and test lead disconnection.

SAFETY WARNINGS AND CAUTIONS

The TRF-100 shall be used only by **trained operators**. All transformers under test shall be **off-line** and **fully isolated**. Always ground the TRF-100 to a substation ground before connecting the test cables to a transformer. Do not perform test procedures or service unless another person is also present who is capable of rendering aid and resuscitation.

SERVICE AND REPAIR

- Do not install substitute parts or perform any unauthorized modification to any TRF-100 test unit.
- Repairs must be performed only by Vanguard Instruments Company factory personnel or by an authorized repair service provider. Unauthorized modifications can cause safety hazards and will void the manufacturer's warranty.

EQUIPMENT RATINGS

IP Rating: The enclosure for TRF-100 has an IP rating of 32.

Pollution Degree: The TRF-100 has a pollution rating of 2.

Operating Voltage: The TRF-100 is rated for use with an operating voltage of 120V or 240V, auto-ranging ±10% of selected voltage.

Power Cord: The TRF-100 is supplied with a 16 AWG, 16A power cord with a NEMA 5-15P plug. Replacement cable shall have the same or better rating and is available through the manufacturer.

VENTILATION REQUIREMENTS

The TRF-100 must be operated with the enclosure lid open.

SAFETY SYMBOLS

Indicates that caution should be exercised

Indicates location of chassis ground terminal

CLEANING

To clean the TRF-100:

- Disconnect all cables and turn the unit off.
- Use a soft, lint-free cloth to wipe all surfaces clean.
- Avoid getting moisture in openings and connectors.
- Don't use any cleaning products or compressed air.

TABLE OF CONTENTS

CONVENTI	ONS USED IN THIS DOCUMENT	1
1.0 INTRO	DUCTION	2
1.1 Ger	neral Description and Features	2
1.2 TRF	-100 Technical Specifications	4
1.3 Con	trols and Indicators	5
2.0 PRE-TI	EST SETUP	7
2.1 LCD	Screen Contrast Control	7
2.2 Prin	iter Paper Control (if printer installed)	7
2.3 Prin	iter Paper (if printer installed)	7
3.0 OPERA	ATING PROCEDURES	8
3.1 Con	nection Diagrams	8
3.1.1.	Typical Connections to a Delta-Wye Transformer	8
3.1.2.	Typical Connections to a Single Phase Transformer	9
3.1.3.	Typical Connections to a Voltage Regulator	. 10
3.1.4.	Typical Connections to a Donut Type (un-mounted) Current Transformer	. 11
3.1.5.	Typical Connections to a Multi-Tap Current Transformer	. 12
3.1.6.	Typical Connections to a Bushing Mount CT on a Single Phase Transformer	. 13
3.1.7.	Typical Connections to Bushing Mount CT's on Delta Transformer	. 14
3.1.8.	Typical Connections to Bushing Mount CT's on Wye Transformer	. 15
3.2 Sett	ting the Test Voltage	. 16
3.3 Tog	gling the Calibration Notification Feature	. 18
3.4 Sett	ting the User Interface Language	. 20
3.5 Sett	ting the Date and Time	. 22
3.6 Usir	ng the Turns Ratio Calculator	. 23
3.7 Per	forming Tests	. 25
3.7.1.	Entering Test Record Header Information	. 25
3.7.2.	Testing a Single Phase Transformer	. 28
3.7.3.	Performing a Three-Phase Test (dT-Y Example)	. 35
3.7.4.	Performing a Special Transformer Test	. 43
3.7.5.	Performing a Quick Test	. 49
3.7.6.	Testing a Three Phase Transformer Using Auto Detect Mode	. 52
3.8.1.	Restoring a Test Record From Flash EEPROM	. 56
3.8.2.	Reviewing a Test Record	. 60
3.8.3.	Printing the Test Record Directory (TRF-100 with built-in printer option only)	. 62
3.8.4.	Erasing Test Records from the Flash EEPROM	. 64
3.9 Wo	rking With Test Plans	. 67
3.9.1.	Performing a Test Using a Transformer Test Plan	. 67
3.9.2.	Unloading a Test Plan From the Working Memory	. 73
3.9.3.	Printing the Test Plan Directory (TRF-100 with built-in printer option only)	. 75
3.9.4.	Printing a Test Plan (TRF-100 with built-in printer option only)	. 77
4.0 DIAGN	IOSTICS, VERIFICATION, AND TROUBLESHOOTING	. 80
4.1 Per	forming an H and X Cable Diagnostic Test	. 80

4.2 Performing a Verification Test	82
APPENDIX A – TRANSFORMER VECTOR GROUP CODES	
APPENDIX B – Common ANSI Transformer Descriptions	85
APPENDIX C – CEI/IEC 60076-1 Transformer Descriptions	
APPENDIX D – Australian Std.2374 Transformer Descriptions	100

LIST OF TABLES

Table 1. TRF-100 Technical Specifications	4
Table 2. Functional Descriptions of TRF-100 Controls and Indicators	6
Table 3. Descriptions of Single Phase Test Results Elements (Column Format)	
Table 4. Descriptions of Single Phase Test Results Elements (Detailed Format)	
Table 5. Descriptions of Y to Delta Test Results Elements (Column Format)	40
Table 6. Descriptions of Y to Delta Test Results Elements (Detailed Format)	42

LIST OF FIGURES

Figure 1. TRF-100 Controls and Indicators	5
Figure 2. Typical H & X Cable Connections to a Delta-Wye Transformer	8
Figure 3. Typical Connections to a Single Phase Transformer	9
Figure 4. Typical Connections to a Single Phase Auto Transformer	9
Figure 5. Typical Connections to a Type A Voltage Regulator	10
Figure 6. Typical Connections to a Type B Voltage Regulator	10
Figure 7. Typical Connections to a Donut Type (un-mounted) Current Transformer (CT)	11
Figure 8. Typical Connections to a Multi-Tap Current Transformer	12
Figure 9. Typical Connections to a Bushing Mount CT on a Single Phase Transformer	13
Figure 10. Typical Connections to Bushing Mount CT's on Delta Transformer	14
Figure 11. Typical Connections to Bushing Mount CT's on Wye Transformer	15
Figure 12. Test Record Printout Showing Calibration Due Date	19
Figure 13. Single Phase Test Results Printout - Column Format	33
Figure 14. Single Phase Test Results Printout - Detailed Format	34
Figure 15. Delta to Y Test Results Printout - Column Format	39
Figure 16. Delta to Y Test Results Printout - Detailed Format	41
Figure 17. Special Dy11 Transformer Test Printout	48
Figure 18. Typical Test Record Directory Printout	63
Figure 19. Test Plan Test Results Printout	72
Figure 20. Sample Test Plan Directory Printout	76
Figure 21. Sample Test Plan Printout	79

CONVENTIONS USED IN THIS DOCUMENT

This document uses the following conventions:

- A key, switch, or knob on the TRF-100 is indicated as [KEY], [SWITCH], [KNOB].
- Menu names are referenced as "MENU NAME"
- TRF-100 LCD screen output is shown as:

1. OPTION	1
2.0PTION	2
3.0PTION	3
4.0PTION	4

• When instructions are provided, the menu item that should be selected is shown in **bold** (option 3 should be selected):

• Warning messages are indicated as:

• Important notes are indicated as:

1

1.0 INTRODUCTION

1.1 General Description and Features

The TRF-100 is Vanguard's third generation, microprocessor-based, automatic, three phase, transformer turns-ratio tester. This lightweight, portable unit is designed for testing transformers at utility power substations.

The TRF-100 determines the transformer turns-ratio using the IEEE C57.12.90 measurement method. The transformer turns-ratio (ranging from 0.8 to 50,000) is determined by precisely measuring the voltages across the unloaded transformer windings. To ensure accuracy, the TRF-100's measuring circuitry self-calibrates before each measurement. It requires neither adjustment nor temperature compensation. The TRF-100's turns-ratio measurement accuracy is 0.1% or better.

The TRF-100 can perform a specific test for each transformer type (such as single phase, delta to Y, Y to delta, delta to delta, or Y to Y) without the need to switch test hookup cables. Also, the unit's automatic transformer phase detection feature can detect different transformer vector diagrams. The TRF-100 can automatically detect and test 67 transformer types defined by ANSI, CEI/IEC and Australian standards.

To prevent an accidental wrong test-lead hook-up (e.g., when the operator reverses H and X leads), the TRF-100 outputs a low-level test voltage to verify the hook-up condition before applying the full test voltage to the transformer.

In addition to measuring a transformer's turns-ratio, the TRF-100 can also measure a transformer's excitation current (in milli-amperes) and its winding phase angle.

Three test voltages (4 Vac, 40 Vac, 100 Vac) allow the TRF-100 to test CT's and PT's, as well as power transformers.

The TRF-100 can also calculate the turns-ratio percentage error if the transformer's nameplate voltages are provided. The baseline turns-ratio is calculated using the nameplate voltages, and the test results are compared to the baseline turns-ratio. The percentage error is then calculated from the difference between the baseline and test turns-ratios.

User Interface

The TRF-100 features a back-lit LCD screen (20 characters by 4 lines) that is viewable in both bright sunlight and low-light levels. The test results screen displays the transformer turns-ratio, excitation current, and turns-ratio accuracy. The unit is controlled via a rugged "QWERTY"-style membrane keypad.

Computer Interface

The TRF-100 can be computer-controlled via the USB interface using the supplied Vanguard TTRA S2 turns ratio analysis PC software. The TTRA S2 software can be used to run a test and to store test results on a PC. Test results can also be exported to Excel, PDF, and XML formats for further analysis.

Optional Transformer Load Tap Changer Control

Voltage regulator or LTC tap positions can be changed remotely using the optional Tap-Changer Remote Control Box. This option eliminates the need to manually raise or lower tap positions from the transformer control panel.

Internal Test Record Storage

Up to 1,000 test records can be stored in the TRF-100's Flash EEPROM memory. Each test record may contain up to 99 turns-ratio, excitation current, phase angle, and nameplate voltage readings. Test records can be recalled locally or transferred to a PC via the USB interface.

Transformer Test Plans

The TRF-100 can store up to 128 transformer test-plans in its Flash EEPROM. A test plan is comprised of the transformer nameplate voltages for each tap setting. The calculated turns-ratio based on the nameplate voltages is compared with the measured turns-ratio to derive the percentage error and Pass/Fail results. By using a test plan, a transformer can be quickly tested and turns-ratio Pass/Fail reports can be reviewed. Test plans can be created with the included PC software and can be transferred to the ATRT-03 via the USB interface.

Optional Built-in Thermal Printer

The TRF-100 can be outfitted with an optional built-in 4.5" wide thermal printer that can be used to print test results.

1.2 TRF-100 Technical Specifications

Table 1. TRF-100 Technical Specifications

TYPE	Portable, lightweight, automatic, three-phase transformer turns-ratio meter		
PHYSICAL SPECIFICATIONS	Dimensions: 17"W x 7"H x 13" D (43.2 cm x 17.8 cm x 33.0 cm) Weight: 16.3 lbs. (7.4 Kg)		
INPUT POWER	100 – 240 Vac, 50/60 Hz, 3 Amps		
MEASUREMENT METHOD	ANSI/IEEE C57.12.90		
RATIO-MEASURING RANGE	0.8 – 50,000 : 1 (5-digit resolution)		
TYPICAL TURNS-RATIO ACCURACY	 4 Vac: 0.8 - 1,000 (±0.08%), 1,001 - 4,000 (±0.1%), 4,001 - 15,000 (±0.25%) 40 Vac: 0.8 - 1,000 (±0.05%), 1,001 - 4,000 (±0.1%), 4,001 - 15,000 (±0.25%), 15,001 - 20,000 (±0.4%), 20,001 - 50,000 (±0.5%) 100 Vac: 0.8 - 1,000 (±0.05%), 1,001 - 4,000 (±0.1%), 4,001 - 15,000 (±0.25%), 15,001 - 20,000 (±0.4%), 20,001 - 50,000 (±0.5%) 		
TEST VOLTAGES	4 Vac @ 1.0A, 40 Vac @ 0.6A, 100 Vac @ 0.1A		
CURRENT READING RANGE	0 – 1 Ampere; accuracy: ±1mA, ±2% of reading (±1 digit)		
PHASE ANGLE MEASUREMENT	0 – 360 degrees; accuracy: ±0.2 degree (±1 digit)		
DISPLAY	back-lit LCD screen (20 characters by 4 lines); viewable in bright sunlight and low-light levels		
PRINTER	optional built-in 4.5" wide thermal printer		
COMPUTER INTERFACE	USB PC interface		
PC SOFTWARE	Windows®-based transformer turns-ratio analysis software is included with purchase		
INTERNAL TEST RECORD STORAGE	stores 1,000 complete transformer test records, each including nameplate voltage, turns-ratios, excitation current, and winding phase angle		
INTERNAL TEST PLAN STORAGE	stores up to 128 transformer test plans		
SAFETY	designed to meet IEC 61010 (1995), UL 61010A-1, and CSA-C22.2 standards		
TEMPERATURE	Operating: -10°C to +50°C (+15°F to +122°F) Storage: -30°C to +70°C (-22°F to +158°F)		
HUMIDITY	90% RH @ 40°C (104°F) non-condensing		
ALTITUDE	2000m (6562 ft) to fully safety specifications		
CABLES	15 ft (4.6m) single phase cable set, 15 ft (4.6m) 3-phase cable set, 25 ft (7.6m) extension cable set, USB cable, power & ground cables, cable bag		
OPTIONS	shipping case, transformer load tap-changer remote control device, 30' (9.14 m) single and 3-phase H and X leads		
WARRANTY	One year on parts and labor		

The above specifications are valid at nominal operating voltage and at a temperature of 25°C (77°F). Specifications may change without prior notice.

1.3 Controls and Indicators

The TRF-100 controls and indicators are shown in Figure 1. A leader line with an index number points to each control and indicator, which is cross-referenced to a functional description in the corresponding table. The purpose of the controls and indicators may seem obvious, but users should familiarize themselves with them before using the TRF-100. Accidental misuse of the controls will usually cause no serious harm. Users should also familiarize themselves with the safety summary information found on the front page of this User's Manual.

Figure 1. TRF-100 Controls and Indicators

ltem Number	Panel Markings	Functional Description
1	EMERGENCY TURN OFF "PUSH"	Emergency turn off test voltage switch
2	Н	H voltage connector
3		Optional built-in thermal printer
4	Х	X voltage connector
5	120-240~, 3A, 50-60Hz Fuse: F5A 250V	Input power connector and fused power switch with third-wire safety ground
6	GROUND	Ground stud for connecting to sub-station ground
7		Rugged "QWERTY"-style membrane keypad
8	BUSY	This LED flashes in response to commands or when a test voltage is applied to the test transformer
9	USB PC	USB PC interface port
10		Back-lit LCD screen (20 characters by 4 lines); viewable in bright sunlight and low-light levels

Table 2. Functional Descriptions of TRF-100 Controls and Indicators

2.0 PRE-TEST SETUP

2.1 LCD Screen Contrast Control

To increase the LCD screen contrast, press and hold the [] key for two seconds. Release the button when the desired contrast level has been reached.

To decrease the LCD screen contrast, press and hold the **[▼]** key for two seconds. Release the button when the desired contrast level has been reached.

2.2 **Printer Paper Control (if printer installed)**

To advance the thermal printer paper, press and release the [] key.

To retract the thermal printer paper, press and release the **[▼]** key.

2.3 **Printer Paper (if printer installed)**

The TRF-100's optional built-in thermal printers use 4.5-inch wide thermal paper for printing test results. To maintain the highest print quality and to avoid paper jams, the use of thermal paper supplied by Vanguard Instruments Company is highly recommended. Additional paper can be ordered from the following sources:

Vanguard Instruments Co, Inc.

1520 S. Hellman Avenue Ontario, CA 91761 Tel: 909-923-9390 Fax: 909-923-9391 Part Number: VIC TP-4 paper

BG Instrument Co.

13607 E. Trent Avenue Spokane, WA 99216 Tel: 509-893-9881 Fax: 509-893-9803 Part Number: VIC TP-4 paper

3.0 OPERATING PROCEDURES

The TRF-100 should always be grounded with the provided ground cable before connecting H and X cables. The transformer bushings should also be grounded before connecting test leads to the transformer. This will prevent inducing any voltages into the TRF-100. All transformer bus connections must be removed, and the transformer must be isolated before performing any tests. Typical transformer connection diagrams are illustrated in the sections below.

3.1 Connection Diagrams

3.1.1. Typical Connections to a Delta-Wye Transformer

Figure 2. Typical H & X Cable Connections to a Delta-Wye Transformer

Figure 3. Typical Connections to a Single Phase Transformer

Figure 4. Typical Connections to a Single Phase Auto Transformer

3.1.3. Typical Connections to a Voltage Regulator

Figure 5. Typical Connections to a Type A Voltage Regulator

Figure 6. Typical Connections to a Type B Voltage Regulator

Figure 7. Typical Connections to a Donut Type (un-mounted) Current Transformer (CT)

The H and X test leads are reversed for the CT ratio test connections shown above.

NOTE

3.1.5. Typical Connections to a Multi-Tap Current Transformer

Figure 8. Typical Connections to a Multi-Tap Current Transformer

3.1.6. Typical Connections to a Bushing Mount CT on a Single Phase Transformer

Figure 9. Typical Connections to a Bushing Mount CT on a Single Phase Transformer

3.1.7. Typical Connections to Bushing Mount CT's on Delta Transformer

Figure 10. Typical Connections to Bushing Mount CT's on Delta Transformer

The CT turns-ratio is obtained by performing a Ynd11 test.

NOTE

Figure 11. Typical Connections to Bushing Mount CT's on Wye Transformer

The CT turns-ratio is obtained by performing a Ynyn0 test.

NOTE

3.2 Setting the Test Voltage

The TRF-100 offers three test voltages, 4 Vac, 40 Vac, and 100 Vac. The unit always defaults to 40 Vac at power-on. The 4 Vac test voltage is for testing transformers which require low test voltages, such as metering Current Transformers (CT's). For metering CT's, higher voltages may drive the CT's into saturation, thus giving invalid results. The 40 Vac test voltage is recommended for testing power transformers. The 100 Vac test voltage is recommended for testing power transformers. Follow the steps below to set the test voltage:

- NOTE
 - a. Turn on the unit and start from the "START-UP" menu:

Press the [2] key (SETUP).

b. The following screen will be displayed:

Press the [4] key (NEXT PAGE).

c. The following screen will be displayed:

Press the [2] key (SET TEST VOLTAGE).

d. The following screen will be displayed:

Select the desired test voltage by pressing the corresponding key on the numeric keypad ([1], [2], or [3]).

e. The voltage will be set and the following confirmation message will be displayed:

Press any key to return to the "START-UP" menu.

REV 1.0 TRF-100 USER'S MANUAL

3.3 Toggling the Calibration Notification Feature (TRF-100 with built-in printer option only)

The TRF-100 offers a convenient feature that can print the unit's calibration due date at the bottom of the test reports printed on the unit's thermal printer:

a. Start from the "START-UP" menu:

Press the **[2]** key (SETUP).

b. The following screen will be displayed:

1.ENTER XFMR ID
2.REVIEW RECORD
3.SAVE/REST RECORD
4.NEXT PAGE

Press the [4] key (NEXT PAGE).

c. The following screen will be displayed:

Press the **[4]** key (*NEXT PAGE*).

d. The following screen will be displayed:

Press the [1] key (CAL PRINT ON/OFF)

e. The following screen will be displayed:

Press the [1] key (ENABLE) to enable or the [2] key (DISABLE) to disable this feature.

f. The following screen will be displayed:

Press any key to return to the "START-UP" menu.

Figure 12. Test Record Printout Showing Calibration Due Date

3.4 Setting the User Interface Language

The TRF-100's user interface language can be changed by following the steps below (English, Spanish, and Turkish are supported):

g. Start from the "START-UP" menu:

Press the [2] key (SETUP).

h. The following screen will be displayed:

Press the [4] key (NEXT PAGE).

i. The following screen will be displayed:

Press the [4] key (NEXT PAGE).

j. The following screen will be displayed:

Press the **[2]** key (SET LANGUAGE).

- k. The following screen will be displayed:
 - 1.ENGLISH 2.TURKISH 3.SPANISH

Select your preferred language by pressing the corresponding key on the keypad.

I. The following screen will be displayed:

Press any key to return to the "START-UP" menu. All menu items and prompts will now be displayed in your preferred language.

3.5 Setting the Date and Time

To set the date and time:

a. Start from the "START-UP" menu:

Press the [2] key (SETUP).

b. The following screen will be displayed:

Press the [4] key (NEXT PAGE).

c. The following screen will be displayed:

Press the **[3]** key (SET TIME/DATE).

d. The following screen will be displayed:

Using the keypad, enter the date and time in the format shown on the screen. The time should be entered in 24-hour military format. You do not need to enter dashes or colons. When the complete date and time has been entered, you will be immediately returned to the "START-UP" menu.

3.6 Using the Turns Ratio Calculator

The TRF-100 features a turns ratio calculator that can be used to calculate the turns ratio for various transformer types. The user only needs to provide the H and X name plate voltage values. Follow the steps below to use the turns ratio calculator.

a. Start from the "START-UP" menu:

Press the [3] key (CALCULATOR).

b. The following screen will be displayed:

XFMR CONFI	GURATI ON:
1.SNG PHS	2.dT-Y
3.Y-dT	4.dT-dT
5.Y-Y	6.SP TEST

Select the transformer configuration by pressing the corresponding key on the keypad. For this example, press the **[3]** key to select the Y-dT transformer type.

c. The following screen will be displayed:

Type the H name plate voltage value using the keypad and then press the **[ENTER]** key.

d. The following screen will be displayed:

Type the X name plate voltage value using the keypad and then press the **[ENTER]** key.

e. The following screen will be displayed showing the H and X name plate voltages along with the calculated turns ratio:

Press any key to return to the "START-UP" menu.

3.7 Performing Tests

3.7.1. Entering Test Record Header Information

You can enter the test record header information before performing tests. The record header includes identifying information such as the company, station, circuit, manufacturer, etc. Once the header information has been set, it will apply to all subsequent test records. To enter the header information:

a. Start from the "START-UP" menu:

Press the [2] key (SETUP).

b. The following screen will be displayed:

Press the **[1]** key (ENTER XFMR ID).

c. The following screen will be displayed:

Type the company name using the keypad. To erase the character at the cursor position, press the **[CLEAR]** key. To edit your entry, press the **[\mathbf{\nabla}]** key to move to the previous character or the **[\mathbf{\Delta}]** key to move to the next character. Press the **[ENTER]** key when you are done typing the company name.

d. The following screen will be displayed:

Type the station name using the keypad and then press the **[ENTER]** key.

e. The following screen will be displayed:

Type the circuit information using the keypad and then press the **[ENTER]** key.

f. The following screen will be displayed:

Type the manufacturer name using the keypad and then press the [ENTER] key.

g. The following screen will be displayed:

Type the transformer's model information using keypad and then press the **[ENTER]** key.

h. The following screen will be displayed:

Type the transformer's serial number using the keypad and then press the **[ENTER]** key.

i. The following screen will be displayed:

KUA:				
	(¢	то	POSI TI ON)	

Type the transformer's KVA rating using the keypad and then press the [ENTER] key.

j. The following screen will be displayed:

OPERATOR:				
	(¢	то	POSI TI ON)	

Type the operator's name using the keypad and then press the **[ENTER]** key. All header information will be saved, and you will be returned to the "START-UP" menu.

3.7.2. Testing a Single Phase Transformer

Follow the steps below to test a single phase transformer:

a. Start from the "START-UP" menu:

Press the [1] key (TEST XFMR).

b. The following screen will be displayed:

XFMR CONFI	GURATION:
1.SNG PHS	2.dT-Y
3.Y-dT	4.dT-dT
5.7-7	6.SP TEST

Press the [1] key (SNG PHS).

c. The following screen will be displayed:

If you had entered name plate voltages for a previous test, the following screen will be displayed instead of the above screen:

Press the **[3]** key if you would like to use the name plate voltage values from the previous test performed, and then **continue to step d**.

See below for details about options 1 and 2.

1. YES

Press the **[1]** key (*YES*) if you would like to enter the transformer name plate voltage values. The following screen will be displayed:

Type the H winding name plate voltage value using the numeric keypad. The screen will be updated as shown below:

Press the **[ENTER]** key.

The following screen will be displayed:

Type the X winding name plate voltage value using the numeric keypad. The screen will be updated as shown below:

Press the [ENTER] key. Continue to step d.

2. NO

Press the **[2]** key (*NO*) if you do not want to enter the transformer name plate voltage values. **Continue to step d.**

d. The following screen will be displayed:

Press the **[START]** key to initiate the test.

e. The following screen will be displayed while the test is being performed:

The test results will be displayed on the LCD screen when testing has finished:

The polarity is displayed as either a plus sign (+) for "in-phase" or a minus sign (-) for "out-of-phase". The value listed under "% DIFF" is the percentage error.

The percentage error (% DIFF) is calculated as the absolute value of: [(Calculated Ratio – Measured Ratio) / Calculated Ratio)] x 100

Press any key to continue.

If your TRF-100 has the built-in printer option, continue to step f.

If your TRF-100 does NOT have the built-in printer option, continue to step h.

f. The following screen will be displayed:

Press the **[1]** key (*YES*) to print the test results.

g. The following screen will be displayed:

Press the **[1]** key (*COLUMN*) to print a columnar report (see Figure 13) or press the **[2]** key (*DETAILED*) to print a detailed report (see Figure 14).

h. The following screen will be displayed:

Press the [1] key (YES) to save the reading.

i. The following screen will be displayed:

Press any key to continue.

The above screen will be displayed if there is currently no data in the unit's memory buffer. If a test was previously performed or a test record was restored from the unit's internal Flash EEPROM, the following screen will be displayed instead:

Press the **[1]** key (*APPEND PREV. DATA*) to append the data in the unit's working memory to the current test results, or press the **[2]** key (*CLEAR PREV. DATA*) to clear any previous data from the unit's memory buffer and only save the current test results.

The following screen will then be displayed:

j. The following screen will be displayed:

```
RUN ANOTHER TEST?
1.YES
2.NO
3.REPEAT PREV. TEST
```

Press the **[2]** key (*NO*).

k. The following screen will be displayed:

Press the [1] key (YES) to save the test record to the unit's Flash EEPROM.

I. The following screen will be displayed momentarily:

The following confirmation screen will then be displayed:

The unit will automatically assign the record number and will not over-write existing test records.

Press any key to return to the "START-UP" menu.

NOTE

Figure 13. Single Phase Test Results Printout - Column Format (TRF-100 with optional built-in printer only)

Table 3. Descrip	otions of Single	Phase Test R	Results Elements (Column Forma	it)
------------------	------------------	--------------	--------------------	--------------	-----

ltem Number	Description
1	Test record date and time.
2	Test record header information (see section 3.7.1).
3	Test voltage.
4	Type of transformer under test.
5	H tap voltage.
6	X tap voltage.
7	Calculated ratio.
8	Percentage error between the calculated ratio and the measured ratio.
9	Excitation current.
10	Measured ratio.
11	Winding polarity.

Figure 14. Single Phase Test Results Printout - Detailed Format (TRF-100 with optional built-in printer only)

ltem Number	Description
1	Test record date and time.
2	Test record header information (see section 3.7.1).
3	Test voltage.
4	Type of transformer under test.
5	H tap voltage.
6	X tap voltage.
7	Calculated ratio.
8	Measured ratio.
9	Percentage error between the calculated ratio and the measured ratio.
10	Winding phase angle.
11	Excitation current.

Table 4. Descriptions of Single Phase Test Results Elements (Detailed Format)

3.7.3. Performing a Three-Phase Test (dT-Y Example)

Follow the steps below to perform a three-phase test. The following example is for testing a dT-Y type transformer:

a. Start from the "START-UP" menu:

Press the [1] key (TEST XFMR).

b. The following screen will be displayed:

XFMR CONFI	GURATI ON:
1.SNG PHS	2.dT-Y
3.Y-dT	4.dT-dT
5.4-4	6.SP TEST

Press the **[2]** key (*dT-Y*).

c. The following screen will be displayed:

Press the **[1]** key (*NO*).

d. The following screen will be displayed:

If you had entered name plate voltages for a previous test, the following screen will be displayed instead of the above screen:

NOTE XFMR NAME PLATE VLTG 1.YES

2.NO 3.USE PREVIOUS DATA

Press the **[3]** key if you would like to use the name plate voltage values from the previous test performed, and then **continue to step d**.

See below for details about options 1 and 2.

1. YES

Press the **[1]** key (*YES*) if you would like to enter the transformer name plate voltage values. The following screen will be displayed:

Type the H winding name plate voltage value using the numeric keypad. The screen will be updated as shown below:

Press the **[ENTER]** key.

The following screen will be displayed:

Type the X winding name plate voltage value using the numeric keypad. The screen will be updated as shown below:

Press the [ENTER] key. Continue to step e.

2. NO

Press the **[2]** key (*NO*) if you do not want to enter the transformer name plate voltage values. **Continue to step e.**

e. The following screen will be displayed:

DELTA to	o Y	XFORMER
"START"	TO	RUN TEST
	OR	
"STOP"	TO	ABORT

Press the **[START]** key to initiate the test.

f. The following screen will be displayed while the test is being performed:

DELTA	to	Ŷ	XFORMER	
PLE	I SE	IJ¢	UT	

The screen will be updated with the Phase A test results as shown:

Testing will continue, and the screen will be updated with the Phase B test results as shown:

RATIO	mĤ	% DIFF
+99.994	0000	0.07
+100.02	0000	0.09
PLEASE	WAIT	

Finally, the screen will be updated with the Phase C test results as shown:

RATIO	mА	% DIFF
+99.994	8888	0.07
+100.02	8888	0.09
+100.02	0000	0.09

Press any key to continue.

If your TRF-100 has the built-in printer option, continue to step g.

If your TRF-100 does NOT have the built-in printer option, continue to step i.

g. The following screen will be displayed:

Press the [1] key (YES) to print the test results.

h. The following screen will be displayed:

Press the **[1]** key (*COLUMN*) to print a columnar report (see Figure 15) or press the **[2]** key (*DETAILED*) to print a detailed report (see Figure 16).

i. The following screen will be displayed:

Press the [1] key (YES) to save the reading.

j. The following screen will be displayed:

Press any key to continue.

k. The following screen will be displayed:

Press the [2] key (NO).

I. The following screen will be displayed:

Press the [1] key (YES) to save the test record to the unit's Flash EEPROM.

m. The following screen will be displayed momentarily:

The following confirmation screen will then be displayed:

Press any key to return to the "START-UP" menu.

TRANSFORMER TEST RESU	LTS	-
DATE:04/29/16 TIME:10:	12:28	-(1)
COMPANY: STATION:		U
CIRCUIT:		
MFR		\frown
MODEL:	→	-(2)
S/N:		\sim
KVA:		3
OPERATOR:		-0
TEST VOLTAGE = 40 VOLTS		-4
TYPE: DELTA to Y XFORMER 4		X
H TAP: H VOLTAGE:	12,000	-0
X TAP: X VOLTAGE:	208	-(6)
PHS M_RATIO mA %DIFF	C_RATIO	C
A +99.994 0000 0.07	99.9260 🔶	-
B +100.02 0000 0.09	99.9260	\mathbf{U}
C + 100.02 0000 0.09	99.9260	\searrow
DATE: 04/29/16 TIME: 10:	12:28	
		(9)
(10)		U

Figure 15. Delta to Y Test Results Printout - Column Format (TRF-100 with built-in printer option only)

ltem Number	Description
1	Test record date and time.
2	Test record header information (see section 3.7.1).
3	Test voltage.
4	Type of transformer under test.
5	H tap voltage.
6	X tap voltage.
7	Measured ratio, excitation current, phase angle, and percentage error for Phase A.
8	Measured ratio, excitation current, phase angle, and percentage error for Phase B.
9	Measured ratio, excitation current, phase angle, and percentage error for Phase C.
10	Winding polarity.

Table 5 Descrip	ntions of Delta to	Y Test Results	Flements	(Column	Format
		i rest nesults			i ormat

Figure 16. Delta to Y Test Results Printout - Detailed Format (TRF-100 with built-in printer option only)

ltem Number	Description
1	Test record date and time.
2	Test record header information (see section 3.7.1).
3	Test voltage.
4	Type of transformer under test.
5	Test H1-H3 and X1-X0 section heading.
6	H1-H3 tap voltage.
7	X1-X0 tap voltage.
8	H1-H3, X1-X0 calculated ratio.
9	H1-H3, X1-X0 measured ratio.
10	H1-H3, X1-X0 percentage error between calculated ratio and measured ratio.
11	H1-H3, X1-X0 transformer turns ratio.
12	H1-H3, X1-X0 voltage ratio.
13	H1-H3, X1-X0 measured phase angle.
14	H1-H3, X1-X0 measured excitation current.
15	Test H2-H1 and X2-X0 section heading
16	H2-H1 tap voltage.
17	X2-X2 tap voltage.
18	H2-H1, X2-X0 calculated ratio.
19	H2-H1, X2-X0 measured ratio.
20	H2-H1, X2-X0 percentage error between calculated ratio and measured ratio.
21	H2-H1, X2-X0 transformer turns ratio.
22	H2-H1, X2-X0 voltage ratio.
23	H2-H1, X2-X0 measured phase angle.
24	H2-H1, X2-X0 measured excitation current.
25	Test H3-H2 and X3-X0 section heading.
26	H3-H2 tap voltage.
27	X3-X0 tap voltage.
28	H3-H2, X3-X0 calculated ratio.
29	H3-H2, X3-X0 measured ratio.
30	H3-H2, X3-X0 percentage error between calculated ratio and measured ratio.
31	H3-H2, X3-X0 transformer turns ratio.
32	H3-H2, X3-X0 voltage ratio.
33	H3-H2, X3-X0 measured phase angle.
34	H3-H2, X3-X0 measured excitation current.

Table 6. Descriptions of Delta to Y Test Results Elements (Detailed Format)

3.7.4. Performing a Special Transformer Test

The TRF-100 can test 67 transformer types defined by ANSI, CEI/IEC and Australian standards. Follow the steps below to perform a test on one of these transformer types (See Appendix B, C, and D for a list of supported transformer types and their corresponding special test numbers):

a. Start from the "START-UP" menu:

Press the [1] key (TEST XFMR).

b. The following screen will be displayed:

XFMR CONFI	GURATI ON:
1.SNG PHS	2.dT-Y
3.Y-dT	4.dT-dT
5.Y-Y	6.SP TEST

Press the [6] key (SP TEST).

c. The following screen will be displayed:

1. ENTER SP TEST NUM

Press the **[1]** key (*ENTER SP TEST NUM*) to enter the special test number. Please see Appendix B, C, and D for a listing of all the transformer types.

The following screen will be displayed:

Type the test number using the keypad and then press the **[ENTER]** key. For this example, we will enter "8" for a type Dy11 transformer. **Continue to step d.**

2. SCROLL TO SELECT

Press the **[2]** key (*SCROLL TO SELECT*) to scroll through the list of supported transformer types. The following screen will be displayed:

Press the $[\blacktriangle]$ or $[\lor]$ key to scroll through the list of special transformer types. Press the **[ENTER]** key when you have found the transformer type that you would like to test. For this example, press the **[** \blacktriangle **]** key until "ST #8 Dy11 XFMR" is displayed on the screen and then press the **[ENTER]** key. **Continue to step d.**

d. The following screen will be displayed:

XFMR NAME PLATE VLTG 1.YES 2.NO

If you had entered name plate voltages for a previous test, the following screen will be displayed instead of the above screen:

Press the **[3]** key if you would like to use the name plate voltage values from the previous test performed, and then **continue to step d**.

See below for details about options 1 and 2.

1. YES

Press the **[1]** key (*YES*) if you would like to enter the transformer name plate voltage values. The following screen will be displayed:

Type the H winding name plate voltage value using the numeric keypad. The screen will be updated as shown below:

Press the [ENTER] key.

The following screen will be displayed:

Type the X winding name plate voltage value using the numeric keypad. The screen will be updated as shown below:

Press the [ENTER] key. Continue to step e.

2. NO

Press the **[2]** key (*NO*) if you do not want to enter the transformer name plate voltage values. **Continue to step e.**

e. The following screen will be displayed:

- This screen and subsequent screens will differ depending on the transformer type selected. Follow any instructions displayed on the LCD screen.
- On this transformer, no neutral is available. The user is asked to install external jumper as instructed on the screen.

Press the **[START]** key to run the test.

f. The following screen will be displayed temporarily:

The following screen will then be displayed:

Follow the instructions displayed on the LCD screen and then press the **[ENTER]** key.

g. The Phase A test will be performed and the results will be displayed on the screen temporarily as shown:

The following screen will then be displayed:

Follow the instructions displayed on the LCD screen and then press the **[ENTER]** key.

h. The Phase B and C tests will be performed and all results will be displayed on the screen temporarily as shown:

RATIO	mА	2	DIFF
+100.04	8882		
+100.06	0002		
+100.05	0002		

Press any key to continue.

If your TRF-100 has the built-in printer option, continue to step i.

If your TRF-100 does NOT have the built-in printer option, continue to step k.

i. The following screen will be displayed:

Press the **[1]** key (*YES*) to print the test results.

j. The following screen will be displayed:

Press the **[1]** key (*COLUMN*) to print a columnar report (see Figure 17) or press the **[2]** key (*DETAILED*) to print a detailed report.

k. The following screen will be displayed:

Press the [1] key (YES) to save the reading.

I. The following screen will be displayed:

Press any key to continue.

m. The following screen will be displayed:

Press the **[2]** key (NO).

n. The following screen will be displayed:

Press the [1] key (YES).

o. The following screen will be displayed momentarily:

The following confirmation screen will then be displayed:

Press any key to return to the "START-UP" menu.

TRANSFORMER TEST RESULTS
DATE: 04/29/16 TIME: 10:35:13
COMPANY: VANGUARD INSTRUMENT STATION: CIRCUIT: MFR: MODEL: S/N: KVA RATING: OPERATOR:
TEST VOLTAGE = 40 VOLTS
TYPE: Dy11 XFMR (SPEC TEST #8)
H TAP: H VOLTAGE: X TAP: X VOLTAGE: PHS M_RATIO mA A +100.04 0002 B +100.06 0002 C +100.05 0002
DATE:04/29/16 TIME:10:35:13

Figure 17. Special Dy11 Transformer Test Printout

(TRF-100 with built-in printer option only)

3.7.5. Performing a Quick Test

The quick test mode can be used to initiate a transformer ratio test by pressing only two keys. Follow the steps below to perform a quick test:

a. Start from the "START-UP" menu:

Press the **[5]** key (QUICK TST).

b. The following screen will be displayed:

1. START TEST

Press the **[1]** key (*START TEST*) to start the test for the transformer type displayed on the LCD screen. **Continue to step e.**

The initial screen will display the last transformer type that was tested using the Quick Test mode. If a test has not been performed yet, the default is a single phase transformer.

2. CHANGE XFMR

Press the **[2]** key (*CHANGE XFMR*) to select a different transformer type. The following screen will be displayed:

Select the transformer type by pressing the corresponding key on the keypad. For this example, press the **[2]** key (dT-Y). **Continue to step c.**

c. The following screen will be displayed:

1. YES

Press the **[1]** key (*YES*) if you would like to enter the transformer name plate voltage values. The following screen will be displayed:

Type the H winding name plate voltage value using the numeric keypad. The screen will be updated as shown below:

Press the **[ENTER]** key.

The following screen will be displayed:

Type the X winding name plate voltage value using the numeric keypad. The screen will be updated as shown below:

Press the [ENTER] key. Continue to step d.

2. NO

Press the **[2]** key (*NO*) if you do not want to enter the transformer name plate voltage values. **Continue to step d.**

d. The following screen will be displayed (screen will vary depending on the transformer type selected):

Press the [1] key (START TEST).

e. The TRF-100 will perform the selected test and display the test results on the LCD screen as shown below:

RATIO	mA	% DIFF
+99.994	8888	0.07
+100.02	8888	0.09
+100.02	9999	0.09

Press any key to return to the "START-UP" menu.

REV 1.0 TRF-100 USER'S MANUAL

3.7.6. Testing a Three Phase Transformer Using Auto Detect Mode

The TRF-100 provides a convenient Auto Detect mode that can automatically detect 130 specific vector groups for different transformer types defined by ANSI, CEI/IEC, and Australian standards. The transformer configurations supported are listed in Appendix B, C, and D. The TRF-100 can detect the vector diagrams for Delta-Delta, Wye-Wye, Delta-Wye, and Wye-Delta transformer types. Follow the steps below to test a three phase transformer using the auto detect mode:

a. Start from the "START-UP" menu:

Press the [4] key (DIAG).

b. The following screen will be displayed:

Press the **[3]** key (AUTO-DETECT XFMR).

c. The following screen will be displayed:

Select a supported three phase transformer type by pressing the corresponding numeric key on the keypad (**[1]**, **[2]**, **[3]**, or **[4]**). For this example, we will perform a Y-dT test (option 2).

d. The following screen will be displayed:

Press the **[START]** key.

e. The following screen will be displayed while the unit determines the transformer configuration:

The TRF-100 will start testing the transformer configurations starting with YNd1. If the transformer is not a type YNd1, it will continue to test for the next type (YNd3, YNd5, etc.) until the transformer type has been determined. The screen will be updated as shown below to indicate which configuration is currently being tested for:

Once the transformer type has been determined, the unit will start performing the test.

f. The screen will be updated with the test results as shown:

RATIO	mА	2	DIFF
+10.022 +10.008 +10.026	0013 0012 0014		

Press any key to continue.

If your TRF-100 has the built-in printer option, continue to step g.

If your TRF-100 does NOT have the built-in printer option, continue to step i.

g. The following screen will be displayed:

Press the [1] key (YES) to print the test results.

h. The following screen will be displayed:

Press the **[1]** key (*COLUMN*) to print a columnar report or press the **[2]** key (*DETAILED*) to print a detailed report.

i. The following screen will be displayed:

Press the **[1]** key (*YES*) to save the reading.

j. The following screen will be displayed:

Press any key to continue.

k. The following screen will be displayed:

Press the **[2]** key (*NO*).

I. The following screen will be displayed:

Press the [1] key (YES).

m. The following screen will be displayed momentarily:

SAVING RECORD... PLEASE WAIT...

The following confirmation screen will then be displayed:

Press any key to return to the "START-UP" menu.

3.8 Working With Test Records

3.8.1. Restoring a Test Record From Flash EEPROM

Use the steps below to restore a test record from the TRF-100's Flash EEPROM to the working memory:

a. Start from the "START-UP" menu:

Press the [2] key (SETUP).

b. The following screen will be displayed:

Press the **[3]** key (SAVE/REST RECORD).

c. The following screen will be displayed:

Press the **[2]** key (*RESTORE RECORD*).

d. The following screen will be displayed:

1. ENTER RECORD NUMBR

Press the **[1]** key (*ENTER RECORD NUMBR*) if you know the record number that you would like to restore.

1.1. The following screen will be displayed:

Type the record number using the alpha-numeric keypad and then press the **[ENTER]** key.

1.2. The following screen will be displayed:

Press any key to continue.

If your TRF-100 has the built-in printer option, continue to step 1.3.

If your TRF-100 does NOT have the built-in printer option, continue to step 1.4.

1.3. The following screen will be displayed:

REVI	EW	RECORD
1.SCROLL	TES	ST RECORD
2.PRINT	TEST	RECORD

Press the **[1]** key (*SCROLL TEST RECORD*) to display the restored test record data on the unit's LCD screen. **Continue to step 1.4.**

Press the **[2]** key (*PRINT TEST RECORD*) to print the restored test record data on the unit's built-in thermal printer. The following screen will be displayed:

PRINT	FORMAT?	
1.COLU	MH	
2.DETR	ILED	

Press the **[1]** key (*COLUMN*) to print the test report in columnar format, or press the **[2]** key (*DETAILED*) to print the test report in detailed format.

The test report will be printed, and you will be returned to the "START-UP" menu. The restored test record will remain loaded in the working memory.

1.4. The following screen will be displayed:

Press the **[▼]** key. The test record details will be displayed as shown:

DELTA to Y XFORMER 1 TAP 04/29/16 10:12:28 TEST VTG = 40

Press the **[▼]** key again to view the test data:

RATIO	mÄ	% DIFF
+99.994	0000	0.07
+100.02	0000	0.09
+100.02	0000	0.09

Press the **[STOP]** key to return to the "START-UP" menu. The restored test record will remain loaded in the working memory.

2. SCROLL TEST RECORD

Press the **[2]** key (*SCROLL TEST RECORD*) to scroll through a directory of the stored test records.

2.1. The following screen will be displayed:

RECOR	DS D	JI RECTO	27
nAbn	to	SCROLL	FWD
"DWN"	TO	SCROLL	RUS

Press the $[\blacktriangle]$ key or the $[\lor]$ key to display the next or previous test record, respectively.

The basic test record information will be displayed as shown:

When you have located the test record that you would like to restored, press the **[ENTER]** key. Continue to step 1.2 on page 57.

3.8.2. Reviewing a Test Record

You can print (TRF-100 with built-in printer option only) or display a test record at the time that it is restored, or you can restore it to the working memory and review it later. To print or display the current test record in the working memory:

a. Perform a test or restore a test record to the working memory and then start from the "START-UP" menu:

Press the **[2]** key (SETUP).

b. The following screen will be displayed:

Press the [2] key (REVIEW RECORD).

If your TRF-100 has the built-in printer option , continue to step c.

If your TRF-100 does NOT have the built-in printer option, continue to step d.

c. The following screen will be displayed:

Press the **[1]** key (*SCROLL TEST RECORD*) to display the test record data on the unit's LCD screen. **Continue to step d.**

Press the **[2]** key (*PRINT TEST RECORD*) to print the restored test record on the unit's built-in thermal printer. The following screen will be displayed:

```
PRINT FORMAT?
1.COLUMN
2.DETAILED
```

Press the **[1]** key (*COLUMN*) to print the test record in columnar format, or press the **[2]** key (*DETAILED*) to print the test record in detailed format. The test record will be printed, and you will be returned to the "START-UP" menu.

d. The following screen will be displayed:

Press the **[V]** key again to view the test data:

RATIO	mА	% DIFF
+99.994	8888	0.07
+100.02	8888	0.09
+100.02	0000	0.09

Press the **[STOP]** key to return to the "START-UP" menu.

REV 1.0 TRF-100 USER'S MANUAL

3.8.3. Printing the Test Record Directory (TRF-100 with built-in printer option only)

Follow the steps below to print a directory of the test records stored in the unit's Flash EEPROM:

a. Start from the "START-UP" menu:

Press the [2] key (SETUP).

b. The following screen will be displayed:

Press the [3] key (SAVE/REST RECORD).

c. The following screen will be displayed:

Press the **[3]** key (*RECORD DIRECTORY*)

d. The following screen will be displayed while the directory is printed on the unit's built-in thermal printer:

You will be returned to the "START-UP" menu once printing is finished.

Please see Figure 18 for a sample test record directory printout.

TEST DIRECTORY	
RECORD NUMBER: 1	
DATE/TIME: 04/29/16 10:12:28 XFMR TYPE: DELTA TO Y XFORMER NUMBER OF TAPS: 1 STATION: CIRCUIT: MFR: MODEL: SER ND:	
RECORD NUMBER: 0	
DATE/TIME: 04/28/16 10:37:08 XFMR TYPE: SINGLE PHASE XFORMER NUMBER OF TAPS: 1 STATION: CIRCUIT: MFR: MDDEL: SER ND:	

Figure 18. Typical Test Record Directory Printout

3.8.4. Erasing Test Records from the Flash EEPROM

Follow the steps below to erase test records from the Flash EEPROM:

a. Start from the "START-UP" menu:

Press the [2] key (SETUP).

b. The following screen will be displayed:

Press the [3] key (SAVE/REST RECORD).

c. The following screen will be displayed:

Press the [4] key (ERASE RECORD).

d. The following screen will be displayed:

1. ERASE SINGLE REC.

Press the **[1]** key (*ERASE SINGLE REC*.) to erase a single test record from the unit's internal Flash EEPROM. The following screen will be displayed:

ERASE	RECORD
NUMBER	:

You can cancel the process and return to the "START-UP" menu by pressing the **[STOP]** key.

Type the record number that you would like to erase using the keypad and then press the **[ENTER]** key. If you do not know the test record number, you can first print a test record directory using the instructions in section 3.8.3.

The following screen will be displayed when the test record has been completely erased:

RECORD	000	ERASED!	
		· · · · · ·	

Press any key to continue. You will be returned to "START-UP" menu.

2. ERASE ALL RECORDS

NOTE

Press the **[2]** key (*ERASE ALL RECORDS*) to erase all the test records from the unit's internal Flash EEPROM. The following warning screen will be displayed:

You can press the **[STOP]** key to cancel the process and return to the "START-UP" menu.

Press the **[ENTER]** key to proceed with deleting all the test records from the unit's Flash EEPROM. The following screen will be displayed during the erasure process:

The following screen will be displayed when all test records have been completely erased:

Press any key to return to the "START-UP" menu.

3.9 Working With Test Plans

The TRF-100 comes with the Vanguard Transformer Turns Ratio Analyzer S2 software (TTRA S2) that can be used to create transformer test plans on a PC (see the TTRA S2 software manual for details). Test plans can then be transferred to the TRF-100 and used to quickly perform tests.

3.9.1. Performing a Test Using a Transformer Test Plan

Follow the steps below to perform a test using a test plan:

a. Start from the "START-UP" menu:

Press the **[2]** key (SETUP).

b. The following screen will be displayed:

Press the [4] key (NEXT PAGE).

c. The following screen will be displayed:

Press the [1] key (TEST PLANS).

d. The following screen will be displayed:

Press the [1] key (LOAD TEST PLAN).

e. The following screen will be displayed:

1. ENTER PLAN NUMBER

Press the **[1]** key (*ENTER PLAN NUMBER*) if you know the test plan number that you would like to use. The following screen will be displayed:

Type the test plan number to load from the unit's Flash EEPROM and then press the **[ENTER]** key. The test plan will be loaded and you will be returned to the "START-UP" menu. Continue to step f to perform a test using the loaded test plan.

2. SCROLL TO SELECT

Press the **[2]** key (*SCROLL TO SELECT*) to scroll through a directory of the test plans stored in the unit's Flash EEPROM. The following screen will be displayed:

TEST	PLAN	DI REC	TORY
"UP"	To s	CROLL	FWD
"DWN"	TO	SCROLL	RUS

Press either the $[\blacktriangle]$ or $[\lor]$ key to scroll forward or reverse through the test plan directory. The test plan header will be displayed:

1	DELTA-Y	TAPS: 20
	.1121-122	

Continue to press the **[**▲**]** or **[**▼**]** key until you have located the test plan that you would like to use, and then press the **[ENTER]** key. The selected test plan will be loaded and you will be returned to the "START-UP" menu. Continue to step f to perform a test using the loaded test plan.
f. Start from the "START-UP" menu again to run a test using the loaded test plan from the previous steps:

Press the [1] key (TEST XFMR).

g. The following screen will be displayed (test details will differ depending on the test type defined in the test plan):

The above screen will be displayed only if a test plan is loaded first.

NOTE

Press the **[1]** key (CONTINUE).

h. The following screen will be displayed:

Press the [1] key (NO).

i. The following screen will be displayed:

Set the transformer to the tap position indicated on the LCD screen. Press the **[START]** key to run the test using the test plan.

j. The unit will start performing the test and the screen will be updated with the test results as shown:

RATIO	mĤ	Z DIFF
+99.991	0001	0.07P
+99.986	0001	0.06P
+99.996	0002	0.09P

For each phase (A, B, and C) a "P" or "F" will be displayed next to the percentage difference value to indicate Pass or Fail, respectively.

Press any key to continue.

If your TRF-100 has the built-in printer option, continue to step k.

If your TRF-100 does NOT have the built-in printer, continue to step m.

k. The following screen will be displayed:

Press the [1] key (YES) to print the test results.

I. The following screen will be displayed:

Press the **[1]** key (*COLUMN*) to print a columnar report or press the **[2]** key (*DETAILED*) to print a detailed report. Please see Figure 19 for a sample printout.

m. The following screen will be displayed:

Press the [1] key (YES) to save the reading.

n. The following screen will be displayed:

TEST	SAVED	

Press any key to continue.

o. If the test plan included multiple tests, the start-up screen for the next test will be displayed as shown:

Repeat steps i through n for this test.

p. The following screen will be displayed after the last defined test in the test plan has been performed:

Press any key to continue.

q. The following screen will be displayed:

Press the [1] key (YES) to save the test record to the unit's Flash EEPROM.

r. The following screen will be displayed momentarily:

The following confirmation screen will then be displayed:

Press any key to return to the "START-UP" menu.

TRANSFORMER TEST RESULTS
DATE:05/05/16 TIME:11:17:28
COMPANY: STATION: CIRCUIT: MFR: Model: S/N: KVA: Operator:
TEST VOLTAGE = 40 VOLTS
TYPE: DELTA to Y XFORMER
H TAP: H VOLTAGE: 12,000 X TAP: X VOLTAGE: 208 PHS M_RATIO MA %DIFF C_RATIO A +99.991 0001 0.07 P 99.9260 B +99.986 0001 0.06 P 99.9260 C +99.996 0002 0.07 P 99.9260
DATE:05/05/16 TIME:11:17:28

Figure 19. Test Results Printout

3.9.2. Unloading a Test Plan From the Working Memory

Follow the steps below to unload a test plan from the working memory:

a. Start from the "START-UP" menu:

Press the [2] key (SETUP).

b. The following screen will be displayed:

Press the [4] key (NEXT).

c. The following screen will be displayed:

1.TEST	PLANS
2.SET	TEST VOLTAGE
3.SET	TIME/DATE
4.NEXT	PAGE

Press the **[1]** key (*TEST PLANS*).

d. The following screen will be displayed:

Press the **[2]** key (UNLOAD TEST PLAN).

e. The test plan will be unloaded from the working memory, and the following screen will be displayed:

Press any key to return to the "START-UP" menu.

3.9.3. Printing the Test Plan Directory (TRF-100 with built-in printer option only)

Follow the steps below to print a directory of the test plans stored in the unit's Flash EEPROM (TRF-100 with built-in printer option only):

a. Start from the "START-UP" menu:

Press the [2] key (SETUP).

b. The following screen will be displayed:

Press the [4] key (NEXT PAGE).

c. The following screen will be displayed:

Press the **[1]** key (*TEST PLANS*).

d. The following screen will be displayed:

Press the [3] key (PLAN DIRECTORY).

The test plan directory will be printed on the built-in thermal printer and you will be returned to the "START-UP" menu. Figure 20 shows a sample test plan directory printout.

```
TEST PLAN DIRECTORY
TEST PLAN NUMBER: 1
XFMR TYPE: Dyn5 XFMR
NUMBER OF TAPS: 1
TEST VOLTAGE = 100 \text{ V}
MER:
MODEL:
KVA RATING:
COMMENTS:
                DY GROUP DYNS
TEST PLAN NUMBER: 2
XFMR TYPE: DELTA to Y XFORMER
NUMBER OF TAPS: 3
TEST VOLTAGE = 40 V
MER:
MODEL:
KVA RATING:
COMMENTS:
TEST PLAN NUMBER: 3
XFMR TYPE: Dyn5 XFMR
NUMBER OF TAPS: 1
TEST VOLTAGE = 100 V
MER:
MODEL:
KVA RATING:
COMMENTS:
               DY GROUP DYNS
TEST PLAN NUMBER: 4
XFMR TYPE: DELTA to Y XFORMER
NUMBER OF TAPS: 5
TEST VOLTAGE = 40 V
MER:
MODEL:
KVA RATING:
COMMENTS:
```

Figure 20. Sample Test Plan Directory Printout

3.9.4. Printing a Test Plan (TRF-100 with built-in printer option only)

Follow the steps below to print a test plan from the internal Flash EEPROM (TRF-100 with builtin printer option only):

a. Start from the "START-UP" menu:

Press the [2] key (SETUP).

b. The following screen will be displayed:

Press the [4] key (NEXT PAGE).

c. The following screen will be displayed:

Press the **[1]** key (*TEST PLANS*).

d. The following screen will be displayed:

Press the [4] key (PRINT TEST PLAN).

e. The following screen will be displayed:

1. ENTER PLAN NUMBER

Press the **[1]** key (*ENTER PLAN NUMBER*) if you know the test plan number that you would like to print. The following screen will be displayed:

Type the test plan number using the keypad and then press the **[ENTER]** key. The test plan will be printed on the built-in thermal printer and you will be returned to the "START-UP" menu. Please see Figure 21 for a sample test plan printout.

2. SCROLL TO SELECT

Press the **[2]** key (*SCROLL TO SELECT*) to select a test plan by scrolling through the test plan directory. The following screen will be displayed:

TEST	PLAN	DI REC	TORY
"UP"	TO S	SCROLL	FWD
"DWN"	TO	SCROLL	RUS

Press either the $[\blacktriangle]$ or $[\lor]$ key to scroll forward or reverse through the test plan directory. The test plan header will be displayed:

1	DELTA-Y	TAPS: 20

Continue to press the [\blacktriangle] or [\checkmark] key until you have located the test plan you would like to print, and then press the [**ENTER**] key. The selected test plan will be printed and you will be returned to the "START-UP" menu. Please see Figure 21 for a sample test plan printout.

TEST PLAN NUMBER 002
TYPE: DELTA to Y XFORMER TEST VOLTAGE = 40 V
MFR: Model: Kva Rating: Comments:
MAX DEVIATION: 0.50% NUMBER OF TAPS: 3
H VOLTAGE: 12,000 V X VOLTAGE: 0,208 V
TAP # 2 H VOLTAGE: 12,000 V X VOLTAGE: 0,208 V
TAP # 3 H VOLTAGE: 12,000 V X VOLTAGE: 0,208 V

Figure 21. Sample Test Plan Printout

4.0 DIAGNOSTICS, VERIFICATION, AND TROUBLESHOOTING

4.1 Performing an H and X Cable Diagnostic Test

Use the steps below to perform a diagnostic test on the H and X cables:

a. Start from the "START-UP" menu:

Press the [4] key (DIAG).

b. The following screen will be displayed:

Press the [1] key (CABLE TEST).

c. The following screen will be displayed:

Connect the H and X cables per the on-screen instructions and press the [ENTER] key.

d. The following screen will be displayed while the cables are being tested:

The screen will be updated with the status of each test as shown:

H0-X0, H1-X1: OK H0-X0, H2-X2: OK H0-X0, H3-X3: OK		CABLE	TEST
H0-X0, H2-X2: OK H0-X0, H3-X3: OK	H0-X0,	H1-X1:	OK
H0-X0, H3-X3: OK	Н0-Х0,	H2-X2:	OK
	H0-X0,	H3-X3:	OK

"NOT OK" will be displayed for a failed diagnostic test.

Press any key to return to the "START-UP" menu.

4.2 Performing a Verification Test

Use the steps below to perform a verification test on the TRF-100's electronics:

a. Start from the "START-UP" menu:

Press the **[4]** key (*DIAG*).

b. The following screen will be displayed:

Press the [2] key (VERIFICATION TEST).

c. The following screen will be displayed:

Connect the H and X cables per the on-screen instructions and then press the **[ENTER]** key.

d. The TRF-100 will start performing a DELTA-DELTA test. The following screen will be displayed momentarily:

The screen will then be updated with the test results for each phase:

mĤ	72	DIFF	
0001			
0001			
0001			
	mA 0001 0001 0001	mA % 0001 0001 0001	mA % DIFF 0001 0001 0001

Press any key to continue. The unit will then proceed to perform a Y to Y test. The following screen will be displayed momentarily:

The screen will then be updated with the test results for each phase:

RATIO	mА	%	DIFF
+1.0000	0001		
+1.0000	0001		
+1.0000	0001		

The ratio reading should be $1.0000 \pm 0.1\%$ for all tests.

NOTE

Press any key to return to the "START-UP" menu.

APPENDIX A – TRANSFORMER VECTOR GROUP CODES

Utility power transformers manufactured in accordance with IEC specifications have a Rating Plate attached in a visible location. This plate contains a list of the transformer's configuration and operating specifications. One such rating is the winding configuration and phasedisplacement code. This code follows a convention that comprises letter and number sets that denote three-phase winding configurations (i.e., Wye, delta, or zig-zag). Letter symbols for the different windings are noted in descending order of their rated voltages. That is, symbols denoting higher voltage ratings will be in upper-case letters and symbols denoting lower or intermediate voltage ratings will be in lower-case letters. If the neutral point of either a wye or zig-zag winding is brought out, the indication will be an N (high voltage) or n (lower voltage). The end numeral is a 300 multiplier that indicates phase lag between windings.

Accordingly, the following standard practice applies:

Wye (or star) = Y (high voltage) or y (low voltage)

Delta = D (high voltage) or d (low voltage)

```
Zig-zag = Z (high voltage) or z (low voltage)
```

For example, **Dyn11** decodes as follows:

D indicates that the high-voltage windings are connected in a Delta configuration

(Since delta windings do not have a neutral point, the N never appears after a D).

y indicates that the lower voltage winding is in a wye (or star) configuration.

n indicates that the lower voltage windings have the neutral point brought out.

11 indicates a phase-displacement lag of 330 degrees between the Wye and the Delta winding.

APPENDIX B – Common ANSI Transformer Descriptions

	TRANSF CONFIGL	ORMER JRATION		WINDING				
STD TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	TURNS RATIO	VECTOR GROUP	NOTES
1	н ₁ 0Он ₂	x ₁ 00x ₂	1 Ø	H ₁ – H ₂	x ₁ -x ₂	V _H V _x	1ph0	SNG – PHS
	H2 Q	b / 2 2	А	H ₁ -H ₃	x ₁ -x ₀	V., V.		
2	B/C	$x_1 O = c X_0$	В	H ₂ -H ₁	x ₂ -x ₀	$\frac{V_{H}}{V_{X}}$	Dyn1	dt-Y
	H ₁ O A H ₃	۵ _{×3}	С	H ₃ – H ₂	x ₃ -x ₀			
	H ₂ O	a X ₂	A	H ₁ -H ₀	x ₁ -x ₂	V		
3		X1 🔨 🕞	В	H ₂ -H ₀	x ₂ -x ₃	$\frac{V_{\rm H}}{V_{\rm x} V_3}$	YNd1	y – d t
	H ₁ O ^{-C} O _{H3}	د∕ √ ×₃	С	H ₃ – H ₀	x ₃ -x ₁			
	H ₂	×2 0	Α	$H_{1} - H_{3}$	x ₁ -x ₃			
4	в	b C	В	H ₂ -H ₁	x ₂ -x ₁	$\frac{v_{H}}{v}$	Dd0	dt-dt
	H ₁ \xrightarrow{A} H ₃	$x_1 $	С	H ₃ -H ₂	x ₃ -x ₂	x		
	H ₂	×2 0	А	H ₁ -H ₀	x ₁ -x ₀	V		
5	B H ₀		В	H ₂ -H ₀	x ₂ -x ₀	•H V	YNyn0	у — у
	H ₁ CO _{H3}		С	H ₃ -H ₀	x ₃ -x ₀	^		

VANGUARD.050207V1

	TRANSF CONFIGL	ORMER JRATION			WINDING	WINDING TESTED		WINDING TESTED		WINDING TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES				
	Р ^Н 2	$x_3 x_1$		А	H ₁ – H ₃	x ₃ -x ₁							
1	в	c b		В	$H_2 - H_1$	$X_{1} - X_{2}$		Dd6					
	H ₁ O A H ₃	0 × ₂		С	$H_{3} - H_{2}$	$x_{2} - x_{3}$	X						
	H ² Q	×2 Q		А	H ₁ – H ₃	$x_{1} - x_{3}$	V						
37	в	b C		В	$H_2 - H_1$	$x_{2} - x_{1}$	$\frac{v_{H}}{v_{v}}$	Dd0					
	H ₁ H ₃	X ₁ A H ₃		С	$H_3 - H_2$	$x_{3} - x_{2}$	~						
	н ^т О	$X_3 $		А	H ₁ – H ₂	X ₃ – X ₂	V						
38	C A	a		В	H ₂ – H ₃	$X_1 - X_3$	 	Dd2					
	н ₃ 0 В Н ₂	0 ×2		С	H3 – H1	$X_2 - X_1$	~						
	H ₁ O	×3 0		Α	H ₁ – H ₂	$X_3 - X_1$							
39	C A	c a		В	H ₂ – H ₃	X ₁ – X ₂		Dd4					
	H ₃ H ₂ H ₂	$x_2 $		С	$H_{3} - H_{1}$	$X_2 - X_3$	x						
	H ₁ O	×2 0		А	H ₁ – H ₂	$x_2 - x_3$							
40	C A	c a		В	H ₂ – H ₃	x ₃ -x ₁	V _H	Dd8					
	H ₃ O _B OH ₂	$x_1 $		С	$H_{3} - H_{1}$	$x_1 - x_2$	x						
	н ₁ О	$x_1 \xrightarrow{b} x_2$		Α	H ₁ – H ₂	X ₁ – X ₃							
41	C	a c		В	H ₂ – H ₃	$X_2 - X_1$		Dd10					
	H ₃ H ₂ H ₂	8 ×3		С	H ₃ – H ₁	$X_3 - X_2$	X						
	H ¹ O	2 ^x 1		Α	H ₁ – H ₃	$X_{1} - X_{0}$							
42	AB	$x_3 o c q x_0^a$		В	H ₂ – H ₁	$x_2 - x_0$	$\frac{V_{H} \cdot V_{3}}{V_{V}}$	Dyn1					
	H ₃ O _C H ₂	δ _{x2}		С	H3 – H2	$X_{3} - X_{0}$	- X						
	H ₂	_b ρ ^x 2	$H_{3}-H_{2}$	А	H ₁ – H ₃	x ₁ - x ₃			NO				
2	в	x ₁ ο a η	^н 1- ^н 3	В	$H_2 - H_1$	X ₂ -X ₁	$\frac{V_{H} \cdot V_{3}}{V_{Y}}$	Dy1	ACCESSIBLE NEUTRAL ON				
	H ₁ O A H ₃	ͼϧ ^ϫ Ϡ	^Н 2 ^{-Н} 1	С	H3 – H2	x ₃ -x ₂			WYE WINDING				
	н ₂	^X 1Q _c	н ₃ -н ₂	А	H ₁ – H ₃	X ₁ – X ₂			NO				
61	ВСС		н ₁ -н ₃	В	$H_2 - H_1$	$X_2 - X_3$	$\frac{V_{H} \bullet V_{3}}{V_{Y}}$	Dy3	ACCESSIBLE NEUTRAL ON				
	H ₁ H ₃ H ₃	x ₃ d	H ₂ -H ₁	С	H3 – H2	$X_3 - X_1$	• X		WYE WINDING				
	H ₂	^X 1 Q		А	H ₁ – H ₃	$x_0 - x_2$							
62	в	$b \sum_{x_1}^{a} o x_2$	_	В	$H_2 - H_1$	$x_0 - x_3$	$\frac{V_{H} \bullet V_{3}}{V_{H}}$	Dyn3					
	H ₁ H ₃	x ₃ o		С	H3 – H2	$x_0 - x_1$	• X						

	TRANSF CONFIGL	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	н ₂ О	_ه ک ^x 1		А	H ₁ – H ₃	$x_3 - x_0$			
3	в	$x_3 $		в	H ₂ – H ₁	$X_{1} - X_{0}$	$\frac{V_{H} \bullet V_{3}}{V}$	Dyn5	
	H ₁ O A H ₃	° δx ₂		С	H3 – H2	$X_2 - X_0$	٧X		
	^н 2 0	. ۵ ^{×1}	н ₃ -н ₂	А	H ₁ – H ₃	$x_3 - x_2$			NO
4	BCC	x ₃ ο ^a η	н ₁ -н ₃	В	$H_2 - H_1$	$X_1 - X_3$	$\frac{V_{H} \cdot V_{3}}{V_{H}}$	Dy5	ACCESSIBLE NEUTRAL ON
	H ₁ O A H ₃	° b×2	^Н 2 ^{-Н} 1	С	H3 – H2	$X_2 - X_1$	۰x		WYE WINDING
	^н 2 8	X ₃ Q _c		А	H ₁ – H ₃	$x_0 - x_1$	V) ,		
5	B C	$X_0 \xrightarrow{\alpha} O X_1$		В	$H_2 - H_1$	x ₀ - x ₂	$\frac{v_{H} \cdot v_{3}}{v_{x}}$	Dyn7	
	H ₁ O A DH ₃	x ₂ 0		С	H ₃ – H ₂	x ₀ - x ₃			
	н ₂ Я	×3 Q c	н ₃ -н ₂	A	H ₁ – H ₃	x ₃ -x ₁	V. V.		NO
6	BC	$\eta - \sigma x_1$	^H 1 ^{-H} 3	В	H ₂ – H ₁	x ₁ - x ₂	$\frac{v_{\rm H} \cdot v_3}{v_{\rm X}}$	Dy7	ACCESSIBLE NEUTRAL ON
	н ₁ бон ₃	x ₂ 0 °	^H 2 ^{-H} 1	С	H3 – H2	x ₂ -x ₃			WYE WINDING
	н ₂ Я	[⊳] ∕ [×] 3	н ₃ -н ₂	A	H ₁ – H ₃	X ₂ – X ₁			NO
63	BC	$x_2 \circ a_c x_0$	H ₁ -H ₃	В	H ₂ – H ₁	X3 - X2	$\frac{V_{H} \cdot V_{3}}{V_{v}}$	Dy9	ACCESSIBLE NEUTRAL ON
	H ₁ O A DH ₃	δ× ₁	^Н 2 ^{-Н} 1	С	H3 – H2	X ₁ – X ₃	~		WYE WINDING
	н ₂ Я	_ه م ^x 3		A	H ₁ – H ₃	X ₂ – X ₀		_	
64	B C	$x_2 \mathbf{o} = \mathbf{o} \mathbf{x}_0$	—	В	H ₂ – H ₁	X ₃ – X ₀	$\frac{v_{H} \bullet v_{3}}{v_{x}}$	Dyn9	
	н ₁ ф _А Ън ₃	čδ×₁		С	H3 – H2	X ₁ – X ₀	^		
	н ₂ Я	×2 Q c		A	H ₁ – H ₃	X ₀ – X ₃			
7	B C	$X_0 \xrightarrow{a} X_3$		В	H ₂ – H ₁	X ₀ – X ₁	$\frac{v_{H} \cdot v_{3}}{v_{x}}$	Dyn11	
	H ₁ d A DH ₃	x ₁ 0 -		С	H3 – H2	X ₀ – X ₂			
	^н 2 Я	X ₂ Q _c	H ₃ -H ₂	A	H ₁ – H ₃	X ₂ -X ₃	Vu • V3		
8	B C	$\eta \rightarrow 0 x_3$	^H 1 ^{-H} 3	В	$H_2 - H_1$	X ₃ – X ₁	$\frac{1100}{V_{X}}$	Dy11	NEUTRAL ON
	н ₁ ф _А рн ₃	x ₁ 0 ~	^H 2 ^{-H} 1	С	H3 – H2	X ₁ – X ₂			WYE WINDING
	н ₁ А	×1 Q	н ₂ -н ₃	A	H ₁ – H ₂	$x_{1} - x_{0}$	o Vu		
45	C/ A		^Н 3 ^{-Н} 1	В	H ₂ – H ₃	x ₂ -x ₀	$\frac{3}{2} \cdot \frac{H}{V_x}$	Dzn0	
	н ₃ 0 В Он ₂	X ₃ b 2	H ₁ -H ₂	С	H ₃ – H ₁	x ₃ -x ₀			
	н ₁ Я	$x_3^{O-b} \qquad p^{X_1}$	н ₂ -н ₃	A	H ₁ -H ₂	X ₀ – X ₂	₃ V _н		
46	C/ A		^Н 3 ^{-Н} 1	В	H ₂ – H ₃	X ₀ – X ₃	$\frac{1}{2} \cdot \frac{1}{V_x}$	Dzn2	
	н ₃ ф _в рн ₂	bx2	^Н 1 ^{– Н} 2	С	H ₃ – H ₁	$X_0 - X_1$			

	TRANSF CONFIGL	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	H ₁ Q	$x_{0} \xrightarrow{b} \qquad \overset{X_{1}}{\overset{X}}{\overset{X}}{\overset{X}}}}}}}}}}}}}}}}}}}}$		A	H ₁ – H ₂	X ₃ – X ₂	V		NO
47	C A		—	в	H ₂ – H ₃	$X_1 - X_3$	$\frac{v_{\rm H}}{v_{\rm x}}$	Dz2	
	н ₃ ф В Н ²	bx2		С	H3 – H1	$X_2 - X_1$			NEOTIAL
	н ₁ Q	×3	H ₂ -H ₃	A	H ₁ -H ₂	$x_{3} - x_{0}$			
48	C/A		H ₃ -H ₁	В	H ₂ – H ₃	$x_{1} - x_{0}$	$\frac{3}{2} \cdot \frac{1}{V_x}$	Dzn4	
	н ₃ фрн ₂	x_2^{O-2} x_1^{O}	H ₁ -H ₂	С	H3 – H1	$x_{2} - x_{0}$			
	н ₁ Q	ρ ^{x₃}		A	H ₁ -H ₂	X ₃ – X ₁	V.		NO
49	C A	a n b	—	В	H ₂ – H ₃	X ₁ – X ₂	$\frac{v_{\rm H}}{v_{\rm x}}$	Dz4	ACCESSIBLE
	н ₃ фрн ₂	x_2^{O-2} x_1^{O}		С	H ₃ – H ₁	$X_2 - X_3$			NEOTINE
	н ₂ Я	₹ [×] 2		A	H ₁ – H ₃	X ₁ – X ₃	v.,		NO
9	BC		—	В	H ₂ – H ₁	X ₂ – X ₁	$-\frac{H}{V_x}$	Dz0	ACCESSIBLE NEUTRAL
	H ₁ d A	$X_1^{\text{O}} \xrightarrow{c} 0^{3}$		С	H3 – H2	$X_3 - X_2$			
	A ^H 2	x ₃ 0°		А	H ₁ – H ₃	x ₃ -x ₁	V		NO
10	B C	b ^η a		В	H ₂ -H ₁	x ₁ - x ₂	$\frac{v_{H}}{v_{x}}$	Dz6	ACCESSIBLE NEUTRAL
	H ₁ C A DH ₃	δx ₂		С	H ₃ – H ₂	x ₂ -x ₃	~		
	н ₁ Q	$x_{2}^{o} \xrightarrow{b} \rho^{X_{3}}$	н ₂ -н ₃	А	H ₁ – H ₂	$x_0 - x_1$	o Vu		
50	C/A	$a \begin{pmatrix} X_0 \\ X_0 \end{pmatrix}^c$	^Н 3 ^{-Н} 1	В	H ₂ – H ₃	$x_0 - x_2$	$\frac{3}{2} \cdot \frac{H}{V_x}$	Dzn6	
	н ₃ фВ Н ₂	۶×1	^н 1- ^н 2	С	H3 – H1	$x_0 - x_3$	~		
	н ₁ О	٩ ×2	н ₂ -н ₃	А	H ₁ – H ₂	$X_2 - X_0$	V		
51	C A	°	^н з- ^н 1	В	H ₂ – H ₃	$x_{3} - x_{0}$	$\frac{3}{2} \cdot \frac{H}{V_v}$	Dzn8	
	H ₃ d B H ₂	X_1° \sum_{b}° x_1°	^H 1 ^{-H} 2	С	$H_3 - H_1$	$X_1 - X_0$	^		
	н ₁ Q	٩ ×2		А	H ₁ -H ₂	$X_2 - X_3$	N		NO
52	C/A	¢ x_		В	H ₂ – H ₃	$X_3 - X_1$	<u></u>	Dz8	ACCESSIBLE
	н ₃ фон ₂	$X_1^{o} \xrightarrow{b} 0^{3}$		С	H3 – H1	$X_1 - X_2$	^		
	н ₁ Q	\mathbf{q}^{1} \mathbf{q}^{2}	н ₂ -н ₃	А	H ₁ – H ₂	$x_0 - x_3$	V		
53	C/A	b A a	^н з- ^н 1	В	$H_2 - H_3$	$X_0 - X_1$	$\frac{3}{2} \cdot \frac{V_{H}}{V}$	Dzn10	
	H ₃ O B H ₂	×30	H ₁ -H ₂	С	$H_{3} - H_{1}$	$x_0 - x_2$	x		
	H ₁ Q	Q ¹ c Q ²		А	H ₁ – H ₂	$x_1 - x_3$			NO
54	C/A	b a		В	$H_2 - H_3$	$X_2 - X_1$	V _H	Dz10	ACCESSIBLE
	н ₃ фВ Н ₂	x ₃ o		С	H ₃ – H ₁	$X_3 - X_2$	X		NEOTHAL

	TRANSF	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	H ₂	X ₃ Q c		А	H ₁ – H ₀	$X_2 - X_1$			
11	A B HO		—	в	$H_2 - H_0$	$X_3 - X_2$	$\frac{V_{H}}{V_{H}}$	YNd7	
	H ₁ O C OH ₃	X ₂ a		С	$H_3 - H_0$	$X_1 - X_3$	•x ••3		
	H ₂ C	a X ₂		А	H ₁ – H ₀	$x_{1} - x_{2}$			
44		X ₁ C	—	в	$H_2 - H_0$	$x_2 - x_3$	$\frac{V_{H}}{V_{X} \cdot V_{3}}$	YNd1	
	H ₁ OCOH ₃	، کې ^{x³}		С	H ₃ – H ₀	$x_{3} - x_{1}$	× • 0		
	н ₂ О	a X ₂	н ₃ -н ₂	А	H ₁ – H ₃	$X_1 - X_2$			NO
12	ABN	X ₁ C	н ₁ -н ₃	в	H ₂ – H ₁	$X_2 - X_3$	$\frac{V_{H}}{V_{X}} \cdot \frac{V_{3}}{2}$	Yd1	ACCESSIBLE NEUTRAL ON
	H ₁ O C OH ₃	° 'V _{X3}	^Н 2 ^{-Н} 1	С	H3 – H2	$X_{3} - X_{1}$			WYE WINDING
	н ₂ О	a A ^X 1		Α	H ₁ – H ₀	$X_3 - X_2$	M		
13		X ₃ C b	—	В	H ₂ – H ₀	$X_1 - X_2$	$\frac{V_{H}}{V_{X} \bullet V_{3}}$	YNd5	
	H ₁ 0 C OH ₃	^ر که _{۲2}		С	$H_3 - H_0$	$X_2 - X_3$			
	н ₂ О	a X1	H ₃ -H ₂	A	H ₁ – H ₃	$x_{3} - x_{1}$			NO
14	A N	X ₃ b	^H 1 ^{-H} 3	В	$H_2 - H_1$	x ₁ -x ₂	$\frac{V_{H}}{V_{X}} \cdot \frac{V_{3}}{2}$	Yd5	ACCESSIBLE NEUTRAL ON
	H ₁ OCOH ₃	° \ x ₂	^Н 2 ^{-Н} 1	С	$H_{3} - H_{2}$	$x_2 - x_3$			WYE WINDING
	н ₂	×36	н ₃ -н ₂	A	H ₁ – H ₃	$x_{2} - x_{1}$			NO
15	^B N		^н 1- ^н 3	В	$H_2 - H_1$	$x_{3} - x_{2}$	$\frac{V_{H}}{V_{Y}} \cdot \frac{V_{\overline{3}}}{2}$	Yd7	ACCESSIBLE NEUTRAL ON
	H10 C OH3	X ₂ a	^Н 2 ^{-Н} 1	С	H3 – H2	x ₁ – x ₃	~		WYE WINDING
	H ₂	×20 c		A	H ₁ – H ₀	$X_1 - X_3$			
16	^B H ₀	▶ × 3		В	H ₂ – H ₀	x ₂ -x ₁	$\frac{V_{H}}{V_{X} \bullet V_{3}}$	YNd11	
	H ₁ O C OH ₃	X ₁ a		С	H3 – H0	$X_3 - X_2$			
	H ₂	×2 ~ c	н ₃ -н ₂	A	H ₁ – H ₃	$X_1 - X_3$			NO
17	_ ^B N	▶ × 3	^н 1- ^н 3	В	H ₂ – H ₁	$X_2 - X_1$	$\frac{V_{H}}{V_{v}} \cdot \frac{V_{\overline{3}}}{2}$	Yd11	ACCESSIBLE NEUTRAL ON
	H ₁ 0 C OH ₃	x ₁ a	^Н 2 ^{-Н} 1	С	H3 – H2	$X_3 - X_2$	^		WYE WINDING
	H ₂	x_3 a x_1		А	H ₁ – H ₀	$x_0 - x_1$			
18	^B H ₀			В	$H_2 - H_0$	$x_0 - x_2$	<u></u>	YNyn6	
	H ₁ O C OH ₃	x ₂		С	$H_3 - H_0$	$x_0 - x_3$	*		
	H ₂	× ₂	H ₂ -H ₀	Α	$H_{1} - H_{0}$	$X_1 - X_2$			
19	^B A H ₀	a ^b η	н ₃ -н ₀	В	$H_2 - H_0$	$x_2 - x_3$		YNy0	NEUTRAL ON
	H10 COH3	$x_1 \circ \circ \circ x_3$	H ₁ -H ₀	С	$H_3 - H_0$	$x_3 - x_1$	x		WINDING

	TRANSF CONFIGL	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	H ₂	× ₂	x ₃ -x ₀	А	H ₁ – H ₃	$X_{1} - X_{0}$			
20	A N	^b X ₀	x ₁ -x ₀	В	H ₂ – H ₁	$X_2 - X_0$	$\frac{v_{H}}{v_{H}}$	Yyn0	NEUTRAL ON
	H ₁ OCOH ₃	x ₁ 0 [°] c OX ₃	x ₂ -x ₀	С	H3 – H2	$X_3 - X_0$			WINDING
	н ₂ О	×2 0		A	H ₁ – H ₀	$X_1 - X_0$	V		
43		a $\sum_{a}^{b} X_{0}$	—	В	H ₂ – H ₀	$X_2 - X_0$		YNyn0	
	H ₁ O C OH ₃	$x_1 \circ \circ x_3$		С	H ₃ – H ₀	$x_3 - x_0$			
	н ₂ О	×2 0		A	H ₁ – H ₃	$X_1 - X_3$	v		NO
21	B N	b a →		В	H ₂ – H ₁	$X_2 - X_1$	$\frac{v_{\rm H}}{v_{\rm x}}$	Yy0	ACCESSIBLE NEUTRAL
	H ₁ O C OH ₃	$x_1 \circ \circ x_3$		С	H3 – H2	X ₃ – X ₂			
	н ₂ О	$X_3 \circ A \circ X_1$	н ₂ -н ₀	A	H ₁ – H ₀	X ₂ – X ₁	v.,		NO ACCESSIBLE
22		υ β	н ₃ -н ₀	В	$H_2 - H_0$	X3 - X2	V _x	YNy6	NEUTRAL ON
	H10 COH3	×2	H ₁ -H ₀	С	H3 – H0	X ₁ – X ₃			WINDING
	н ₂ О	$X_3 \circ A^{a} \circ X_1$	x ₃ -x ₀	А	H ₁ – H ₃	x ₀ – x ₁	V		NO ACCESSIBLE
23	A	^b X ₀	x ₁ -x ₀	В	H ₂ -H ₁	x ₀ -x ₂	$\frac{v_{H}}{v_{x}}$	Yyn6	NEUTRAL ON HIGH VOLTAGE
	н ₁ 0 с он ₃	×2	x ₂ -x ₀	С	H ₃ – H ₂	$x_0 - x_3$	~		WINDING
	н ₂ О	$X_3 \circ a \circ X_1$		A	H ₁ – H ₃	x ₃ -x ₁	v		NO
24	A N	υ b	—	В	H ₂ – H ₁	X ₁ - X ₂	$\frac{v_{H}}{v_{x}}$	Yy6	ACCESSIBLE NEUTRAL
	H10 COH3	x2		С	H ₃ – H ₂	$x_{2} - x_{3}$			
	н ₂ О	$\rho_{x_2}^{x_2}$		A	H ₁ – H ₃	$x_{1} - x_{0}$			
65		X ⁰ X ₀		В	H ₂ – H ₁	$x_2 - x_0$	$\frac{V_{H} \cdot V_{3}}{V_{X}}$	YNzn1	
	н ₁ 0 с он ₃	° > 0 X ₃		С	H3 – H2	x ₃ -x ₀			
	н ₂ О	$a \qquad \qquad$		A	H ₁ – H ₃	X ₁ – X ₀			NO ACCESSIBLE
25	AN	X10 X0 b	—	В	$H_2 - H_1$	X ₂ – X ₀	$\frac{1100}{V_{X}}$	Yzn1	NEUTRAL ON WYE WINDING
	н ₁ 0 с он ₃	د ک <mark>م</mark> ع		С	H3 – H2	X ₃ – X ₀			
	н ₂ О	$a \qquad \qquad$	н ₃ -н ₂	A	H ₁ – H ₃	X ₁ – X ₂			NO
26	A	X ₁ b	^H 1 ^{-H} 3	В	$H_2 - H_1$	X ₂ – X ₃	$\frac{v_{\rm H}}{V_{\rm X}} \cdot \frac{v_{\rm 3}}{2}$	Yz1	ACCESSIBLE NEUTRAL
	H ₁ COH ₃	° ~ X3	^Н 2 ^{-Н} 1	С	H3 – H2	$X_3 - X_1$			
	н ₂ О			A	H ₁ – H ₃	x ₃ - x ₀	VII VE		
27	A N	X ₃ X ₀ b	—	В	H ₂ -H ₁	$x_1 - x_0$	$\frac{\mathbf{v}_{H} \cdot \mathbf{v}_{X}}{V_{X}}$	Yzn5	
	H ₁ OCOH ₃	° × 2		С	$H_{3} - H_{2}$	$x_{2} - x_{0}$			

	TRANSF CONFIGL	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	H ₂	ρ ^X 1	н ₃ -н ₂	А	H ₁ – H ₃	$X_3 - X_1$			
28	_ ^B N	X ₂ a b	н ₁ -н ₃	В	H ₂ – H ₁	X ₁ – X ₂	$\frac{V_{H}}{V_{H}} \cdot \frac{V_{\overline{3}}}{2}$	Yz5	ACCESSIBLE
	H10 C OH3	° ~ ×2	^Н 2 ^{-Н} 1	С	H3 – H2	$X_2 - X_3$	·x -		NEUTRAL
	H ₂	X ₃ Q		А	H ₁ – H ₃	$X_0 - X_1$			
66		$\begin{bmatrix} x_0 \\ x_0 \end{bmatrix} = \begin{bmatrix} x_0 \\ x_0 \end{bmatrix} = \begin{bmatrix} x_0 \\ x_1 $	—	В	$H_2 - H_1$	$X_0 - X_2$	$\frac{V_{H}}{V_{H}} \cdot \frac{V_{\overline{3}}}{V_{\overline{3}}}$	YNzn7	
	H ₁ OCOH ₃	x ₂ 0		С	H3 – H2	$X_0 - X_3$	۰x		
	H ₂	X3Q ° ×		А	H ₁ – H ₃	$X_0 - X_1$			NO
29	B N	$b \xrightarrow{X_0} a^{1}$	—	В	H ₂ – H ₁	$X_0 - X_2$	$\frac{v_{H} \cdot v_{3}}{v_{x}}$	Yzn7	ACCESSIBLE NEUTRAL ON
	H ₁ OCOH ₃	x ₂ 0		С	H3 – H2	$X_0 - X_3$			WYE WINDING
	н ₂ О	X ₃ Q_c	н ₃ -н ₂	А	H ₁ – H ₃	$x_{2} - x_{1}$			NO
30	B N		^н 1- ^н 3	В	H ₂ – H ₁	x ₃ -x ₂	$\frac{V_{H}}{V_{X}} \frac{V_{3}}{2}$	Yz7	ACCESSIBLE
	H ₁ OCOH ₃	x ₂ 0	^Н 2 ^{-Н} 1	С	H3 – H2	x ₁ -x ₃			
	н ₂ О	$x_2 $		A	H ₁ – H ₃	$X_0 - X_3$			
67				В	H ₂ – H ₁	$X_0 - X_1$	$\frac{V_{H} \bullet V_{3}}{V_{X}}$	YNzn11	
	H ₁ O C OH ₃	х ₁ о		С	H3 – H2	$X_0 - X_2$			
	н ₂ О	x ₂ c v		А	H ₁ – H ₃	$X_0 - X_3$			NO
31	B N	$ \overset{b}{\longrightarrow} \overset{c}{\xrightarrow{X_0}} \overset{c}{$	—	В	H ₂ – H ₁	$X_0 - X_1$	$\frac{V_{H} \bullet V_{\overline{3}}}{V_{H}}$	Yzn11	ACCESSIBLE NEUTRAL ON
	H ₁ OCOH ₃	x ₁ o		С	H3 – H2	$X_0 - X_2$	۴x		WYE WINDING
	н ₂ О	x ₂ x ₂ x	н ₃ -н ₂	A	H ₁ – H ₃	X ₁ – X ₃			NO
32	A N		H ₁ -H ₃	В	H ₂ – H ₁	X ₂ – X ₁	$\frac{V_{H}}{V_{\chi}} \cdot \frac{V_{3}}{2}$	Yz11	ACCESSIBLE NEUTRAL
	H ₁ O C OH ₃	х ₁ о	^н 2 ^{-н} 1	С	H3 – H2	X ₃ – X ₂			
		Å,	x ₂ -x ₃	А	H ₁ – H ₀	$x_1 - x_2$	~ Vu		
55		c/a	x ₃ -x ₁	В	H ₂ – H ₀	$x_{2} - x_{3}$	$\frac{2}{3} \cdot \frac{\pi}{V_x}$	ZNd0	
	н ₃ _В – он ₂	x ₃ d b b x ₂	x ₁ -x ₂	С	H ₃ – H ₀	x ₃ -x ₁			
	Q ^H 1	^X 1 8		А	H ₁ – H ₂	X ₁ – X ₂	V		NO
56	C N	c a		В	H ₂ – H ₃	$x_2 - x_3$	<u></u>	Zd0	ACCESSIBLE NEUTRAL ON
	н ₃ о _в – он ₂	x ₃ d b x ₂		С	H ₃ – H ₁	x ₃ -x ₁			HIGH VOLTAGE
	$\mathbf{Q}_{A}^{H_{1}}$	X ₂ Q b X ₃	x ₂ -x ₃	А	H ₁ – H ₀	$X_2 - X_1$. V		
57	с с	a C	x ₃ -x ₁	В	H ₂ – H ₀	X ₃ – X ₂	$\frac{2}{3} \cdot \frac{H}{V_{\downarrow}}$	ZNd6	
	_{Н3} _В – о _{Н2}	×1	x ₁ -x ₂	С	$H_3 - H_0$	$X_{1} - X_{3}$	х		

	TRANSF CONFIGI	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	Q ^H 2	a Q ^x 1		A	H ₁ – H ₀	$x_3 - x_1$			NO
33		X ₃ 0-C η	—	В	$H_2 - H_0$	$X_1 - X_2$	$\frac{V_{H}}{V_{X} V_{3}}$	ZNy5	ACCESSIBLE NEUTRAL ON
		^b \bar{b}^{X_2}		С	H ₃ – H ₀	$X_2 - X_3$	Â. C		WYE WINDING
	q ^H 2	a Q ^x 1	н ₃ -н ₂	Α	H ₁ – H ₃	$x_{3} - x_{1}$			NO
34	A B	X ₃ 0-C η	H ₁ -H ₃	В	$H_2 - H_1$	$x_1 - x_2$	$\frac{V_{H}}{V_{X}} \cdot \frac{V_{3}}{2}$	Zy5	ACCESSIBLE NEUTRAL
	H ₁ C OH ₃	^b \b ^X 2	^H 2 ^{-H} 1	С	H ₃ – H ₂	x ₂ -x ₃			
	Q ^H 2	$x_2 \mathbf{q}_n$		Α	H ₁ – H ₀	$X_1 - X_3$			NO
35			—	В	$H_2 - H_0$	$X_2 - X_1$	$\frac{v_{H}}{v_{X} \cdot v_{3}}$	ZNy11	ACCESSIBLE NEUTRAL ON
		x ₁ ď		С	$H_{3} - H_{0}$	$X_3 - X_2$			WYE WINDING
	q ^H 2	×2 9	H ₃ -H ₂	Α	H ₁ – H ₃	$X_1 - X_3$			NO
36		$a \rightarrow c o x_3$	H ₁ -H ₃	в	$H_2 - H_1$	$x_2 - x_1$	$\frac{V_{H}}{V_{X}} \cdot \frac{V_{3}}{2}$	Zy11	ACCESSIBLE
	н <mark>о с</mark> -он _з	×1	^H 2 ^{-H} 1	С	H ₃ – H ₂	$X_3 - X_2$			NEO THINE
	β ^H ²	p ^{x2}		А	H ₁ – H ₂	$x_1 - x_2$	V		
58	AB	a b	H ₄ -H ₀				$\frac{v_{H}}{v_{x}}$	T-T	
	HO OH3	x ^d ₁	$x_{1}^{2} - x_{2}^{2}$	В	H ₁ – H ₃	$x_1 - x_3$		0	
	^H 2 Q	~ ×2	H ₂ -H ₃	А	H ₁ – H ₃	$x_{1} - x_{2}$	$\frac{V_{H}}{V} \cdot \frac{V_{3}}{2}$	T-T	
59	A B H	v Q p					[∨] х [∠] V _{H 2}	.30	
	HO 0'3	^1	x ₁ -x ₂	В	H ₂ – H ₃	$x_1 - x_3$	$\overline{V_x} \cdot \overline{V_3}$	Lag	
	H ₂ Q	X ₂ Q _b v	H ₂ -H ₃	Α	H ₁ – H ₃	$x_1 - x_3$	$\frac{V_{\rm H}}{V_{\rm H}} \cdot \frac{V_{\rm \overline{3}}}{2}$	T-T	
60	ABH						Vx 2	30	
	HO 0'3	X ₁ 0 ^a	x ₁ -x ₃	В	H ₂ – H ₃	$x_{2} - x_{1}$	$\overline{V_{H}} \cdot \overline{V_{3}}$	Lead	

APPENDIX C – CEI/IEC 60076-1 Transformer Descriptions

	TRANSF CONFIGL	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	1V Q	2W Q a 2U		А	1U – 1W	2W – 2U			
1	в	c b		В	1V – 1U	2U – 2V	U1 U2	Dd6	
	1U A 1W	0 2V		С	1W – 1V	2V – 2W			
	1V Q	2V Q		А	1U – 1W	2U – 2W			
37	в	b		В	1V – 1U	2V – 2U	U1 U2	Dd0	
	1U A 1W	2U 0 a 2W		С	1W – 1V	2W – 2V			
	1U X	2W C b 2U		А	1U – 1V	2W – 2V			
38	C/ A	a		В	1V - 1W	2U – 2W	U2	Dd2	
	1WO01V	2V		С	1W – 1U	2V – 2U			
	1U Q	2W Q		А	1U – 1W	2W – 2U			
39	C/A	c		В	1V – 1U	2U – 2V	U1 U2	Dd4	
	1W B 1V	2V 0 2U		С	1W – 1U	2V – 2W			
	1U Q	X2 Q		А	1U – 1V	2V – 2W			
40	C/A	c/a		В	1V - 1W	2W – 2U	U1 U2	Dd8	
	1WO B 1V	2U 0 2W		С	1W – 1U	2U – 2V			
	1U Q	2U Q b 2V		А	1U – 1V	2U – 2W			
41	C/A	a		В	1V - 1W	2V – 2U	U1 U2	Dd10	
	1W 0 B 1V	0 2W		С	1W – 1U	2W – 2V			
	1U Q	2 ⁰		А	1U – 1W	2U – 2N			
42	AB	2WO-c-d		В	1V – 1U	2V – 2N	$\frac{U1 \bullet V_3}{U2}$	Dyn1	
		$\delta_{_{2V}}$		С	1W – 1V	2W – 2N			
	1V 0	_b ₽ ^{2V}	1W – 1V	А	1U – 1W	2U – 2V			NO
2	в	2U Ο a η	1U – 1W	В	1V – 1U	2V – 2W	$\frac{U1 \bullet V_3}{U2}$	Dy1	ACCESSIBLE NEUTRAL ON
		čδ _{2W}	1V – 1U	С	1W – 1V	2W – 2U			WYE WINDING
	1V 0	2U Q _c	1W – 1V	А	1U – 1W	2U – 2V			NO
61	ВСС	b a 0 2V	1U – 1W	В	1V – 1U	2V - 2W	$\frac{V_{U1} \bullet V_3}{U^2}$	Dy3	ACCESSIBLE NEUTRAL ON
		2W d	1V – 1U	С	1W – 1V	2W – 2U			WYE WINDING
	1V 0	2U Q _c		А	1U – 1W	2N – 2V			
62	в			В	1V – 1U	2N – 2W	$\frac{U1 \bullet V_3}{U2}$	Dyn3	
	1U 0 A 1W	2W Q		С	1W – 1V	2N – 2U	-		

	TRANSF CONFIGI	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	1V Q	_b 2∪		А	1U– 1W	2W – 2N			
3	BC	2W 0 a 2N		В	1V – 1U	2U – 2N	$\frac{U1 \bullet V_3}{U2}$	Dyn5	
	1U 0 A 1W	ʹʹϸϩ៴		С	1W - 1V	2V – 2N	02		
	1V Q	²⁰ 2	1W – 1V	А	1U– 1W	2W - 2V			NO
4	BC	2W O	1U-1W	В	1V – 1U	2U – 2W	U1 • V3	Dy5	ACCESSIBLE NEUTRAL ON
	1U 0 A 1W	° 6 2V	1V _ 1U	С	1W – 1V	2V – 2U	02		WYE WINDING
	1V Q	^{2W} Q _C		A	1U – 1W	2N – 2U			
5	в	2N a 02U		В	1V – 1U	2N –2V	$\frac{U1 \bullet V_3}{U2}$	Dyn7	
		_{2V} 0 °		С	1W – 1V	2N– 2W			
	1V O	2W Q _c	1W-1V	A	1U – 1W	2W – 2U			NO
6	в		1U-1W	В	1V – 1U	2U – 2V	$\frac{U1 \bullet V_3}{U2}$	Dy7	ACCESSIBLE NEUTRAL ON
		2V O D	1V-1U	С	1W – 1V	2V – 2W			WYE WINDING
	1V O	p 2W	1W-1V	A	1U– 1W	2V – 2U			NO
63	в	2V 0 a 2N	1U–1W	В	1V – 1U	2W – 2V	$\frac{U1 \bullet V_3}{U2}$	Dy9	ACCESSIBLE NEUTRAL ON
	1U 0 A 1W	° b 2U	1V-1U	С	1W – 1V	2U – 2W	02		WYE WINDING
	1V Q	P 2W		A	1U– 1W	2V – 2N			
64	в	2V 0 a d 2N	—	В	1V – 1U	2W – 2N	$\frac{U1 \bullet V_3}{U2}$	Dyn9	
		° 🖒 2U		С	1W – 1V	2U – 2N	02		
	1V 0	2V Q c		A	1U – 1W	2N – 2W			
7	в	2N a 0 2W		В	1V – 1U	2N– 2U	$\frac{U1 \bullet \sqrt{3}}{U2}$	Dyn11	
	1U 0 1W	2U O ^D		С	1W – 1V	2N – 2V	01		
	1V Q	2V Q c	1W-1V	A	1U – 1W	2V – 2W	, -		NO
8	в		1U–1W	В	1V – 1U	2W – 2U	$\frac{U1 \bullet V3}{U2}$	Dy11	ACCESSIBLE NEUTRAL ON
		2U O ^D	1V–1U	С	1W – 1V	2U – 2V			WYE WINDING
	1U Q	2U Q	1V–1W	A	1U – 1V	2U – 2N			
45	C/A		1W-1U	В	1V – 1W	2V – 2N	$\frac{3}{2} \cdot \frac{U1}{U2}$	Dzn0	
		0 2W b 2V	1U-1V	С	1W – 1U	2W – 2N			
	1U Q		1V-1W	A	1U– 1V	2N – 2V	0 114		
46	C/A	$\frac{2W}{a}$ $\frac{2N}{2N}$ c	1W–1U	В	1V – 1W	2N – 2W	$\frac{3}{2} \cdot \frac{01}{02}$	Dzn2	
	1W 0 B 1V	62V	1U–1V	С	1W – 1U	2N – 2U			

	TRANSF CONFIGL	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	1U Q			A	1U – 1V	2W – 2V			NO
47	C A	^{2W} a c	—	В	1V – 1W	2U – 2W	U1 U2	Dz2	ACCESSIBLE
	1W 0 B 1V	6 _{2V}		С	1W – 1U	2V – 2U			NEOTRAL
	1U Q	9 2W	1V_1W	A	1U – 1V	2W – 2N			
48	C/A		1W–1U	В	1V – 1W	2U – 2N	2 U2	Dzn4	
	1WO B 1V	ο _C δ _{2U}	1U-1V	С	1W – 1U	2V – 2N			
	1U Q	9 2W		A	1U – 1V	2W – 2U			NO
49	C A		—	в	1V – 1W	2U – 2V	U1 U2	Dz4	ACCESSIBLE
	1W 0 B 1V	o,		С	1W – 1U	2V – 2W			NEOTIAL
	1V 8	219		A	1U – 1W	2U – 2W	U1		NO
9	BC	a η b 2W	—	В	1V – 1U	2V – 2U	U2	Dz0	ACCESSIBLE NEUTRAL
	1U O O1W			С	1W – 1V	2W – 2V			
	1V A			А	1U – 1W	2W – 2U			NO
10	B C	b ² η ^a		В	1V – 1U	2U – 2V	U1 U2	Dz6	ACCESSIBLE NEUTRAL
	1U 0 A 0 1W	∂ 2V		С	1W – 1V	2V – 2W			
	1U 8		1V-1W	A	1U – 1V	2N – 2U	2 11		
50	C/A	a^{2V} a^{2N} c	1W –1 U	В	1V – 1W	2N – 2V	2 U2	Dzn6	
	1W 0 B 1V	b 2U	1U-1V	С	1W – 1U	2N – 2W			
	1U Q	2V Q a	1V-1W	A	1U – 1V	2V – 2N			
51	C/A	°2N	1W-1U	В	1V – 1W	2W – 2N	$\frac{3}{2} \cdot \frac{01}{02}$	Dzn8	
	1W O B D 1V	0 U b 2W	1U-1V	С	1W – 1U	2U – 2N			
	1U R	2V Q a		A	1U– 1V	2V – 2W			NO
52	C/ A			В	1V – 1W	2W – 2U	U1 U2	Dz8	ACCESSIBLE NEUTRAL
	1W 0 B 1V	0 <u>0</u> 20 b		С	1W – 1U	2U – 2V			
	1∪ A	^{2U} c 2V	1V–1W	A	1U – 1V	2N – 2W			
53	C/ A		1W-1U	В	1V – 1W	2N – 2U	$\frac{3}{2} \cdot \frac{U1}{U2}$	Dzn10	
	1WO01V	2W 0	1U-1V	С	1W – 1U	2N – 2V			
	1∪ R	2U Q °/O 2V		A	1U – 1V	2U – 2W			NO
54	C/ _A	b a		В	1V – 1W	2V– 2U	U1 U2	Dz10	ACCESSIBLE NEUTRAL
	1W d B 1V	2W 0		С	1W –1U	2W – 2V			

	TRANSF CONFIGI	ORMER JRATION			WINDING	G TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	1V	2W 0 c		А	1U – 1N	2V – 2U			
11	A A N	b 2U	—	в	1V – 1N	2W - 2V		YNd7	
	1U O C O1W	2V 0 a		С	1W – 1N	2U – 2W	02 - 0		
	1V 0	a 2U		А	1U – 1N	2U – 2V			
44		2W C	—	в	1V – 1N	2V – 2W	$\frac{U1}{U2 \bullet V_3}$	YNd1	
	1U O C O 1W	° 🖌 2V		С	1W – 1N	2W – 2U			
	1V	a 2V	1W-1V	А	1U – 1W	2U – 2V			NO
12	A	2U 🔨 b	1U–1W	в	1V – 1U	2V – 2W	$U_1 V_3$ $U_2 2$	Yd1	ACCESSIBLE NEUTRAL ON
	1U O C O 1W	° 🖌 2W	1V-1U	С	1W - 1V	2W – 2U			WYE WINDING
	1V	a 2U		А	1U– 1N	2W – 2U			
13	^B _⊿ N	2W 🔨 🛛 b	—	в	1V – 1N	2U – 2V	$\frac{U1}{U2 \cdot \sqrt{3}}$	YNd5	
	1UO C 01W	c 🗸 2V		С	1W – 1N	2V – 2W	02 0		
	1V	a 20	1W-1V	Α	1U – 1W	2W – 2U			NO
14	⊿В	2WO b	1U–1W	в	1V – 1U	2U – 2V	$\frac{U_1}{U_2} \cdot \frac{V_3}{2}$	Yd5	ACCESSIBLE NEUTRAL ON
	1U 0 C 01W	° 2V	1V-1U	С	1W – 1V	2V – 2W			WYE WINDING
	1V	2W Q	1W-1V	A	1U – 1W	2V – 2U			NO
15	β	b 2U	1U–1W	в	1V – 1U	2W – 2V	$\frac{U1}{U2} \cdot \frac{V_3}{2}$	Yd7	ACCESSIBLE NEUTRAL ON
	1U 0 C 01W	2V 0 a	1V-1U	С	1W – 1V	2U – 2W			WYE WINDING
	1V	2V 🖍 . c		Α	1U– 1N	2U – 2W			
16	^B _{1N}	b 2W		В	1V – 1N	2V– 2U	$\frac{U1}{U2 \cdot \sqrt{3}}$	YNd11	
	1U O C O1W	2U a		С	1W – 1N	2W – 2V			
	1V	2V	1W-1V	A	1U– 1W	2U – 2W			NO
17	⊿В	b 2W	1U–1W	В	1V – 1U	2V – 2U	$\frac{U1}{U2} \cdot \frac{V_3}{2}$	Yd11	ACCESSIBLE NEUTRAL ON
	1U 0 C 01W	2U a	1V–1U	С	1W – 1V	2W – 2V			WYE WINDING
	1V	2W O a O 2U		A	1U – 1N	2N – 2U			
18	^B _{1N}	c v b 2N		В	1V – 1N	2N – 2V	U1 U2	YNyn6	
	1U 0 C 0 1W	0 2V		С	1W – 1N	2N – 2W			
	1V	2V	1V-1N	A	1U – 1N	2U – 2V			NO
19	^B ∠ _{1N}	^b	1W-1N	В	1V – 1N	2V – 2W	U1 U2	YNy0	NEUTRAL ON
	1U 0 C 01W	2U 0 C 0 2W	1U-1N	С	1W – 1N	2W – 2U	52		UOW VOLTAGE WINDING

	TRANSF CONFIGI	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	1V	2V	2W-2N	Α	1U – 1W	2U – 2N			
20	в	^b _{2N}	2U-2N	В	1V – 1U	2V– 2N	U1 U2	Yyn0	NEUTRAL ON
	1U O C O1W	2U 0 C 0 2W	2V-2N	С	1W – 1V	2W – 2N			WINDING
	1U Q	2V 0		А	1U – 1N	2U – 2W			
43		a A	—	В	1V – 1N	2V – 2N	U1 U2	YNyn0	
	1WO C 01V	2U 0 C 0 2W		С	1W – 1N	2W – 2N			
	1V O	2V 0		А	1U – 1W	2U – 2W			NO
21	B	b		В	1V – 1U	2V – 2U	U1 U2	Yy0	ACCESSIBLE
	1U O C O 1W	2U 0 C 0 2W		С	1W – 1V	2W – 2V			
	1V	2W Q a O 2U	1V-1N	А	1U – 1N	2V – 2U			
22	^B _{1N}	c b	1W-1N	В	1V – 1N	2W – 2V	U1 U2	YNy6	NEUTRAL ON
		0 2V	1U-1N	С	1W – 1N	2U – 2W			WINDING
	1V	2W 0 a 0 2U	2W-2N	А	1U – 1W	2N – 2U			
23	A N	c O _{2N}	2U-2N	В	1V – 1U	2N – 2V	U1 U2	Yyn6	NEUTRAL ON
	1U O C O 1W	0 2V	2V-2N	С	1W – 1V	2N – 2W			WINDING
	1V	2W a 2U		Α	1U – 1W	2W – 2U			NO
24	⊿В	c 🍑 b	—	В	1V – 1U	2U – 2V	U1 U2	Yy6	ACCESSIBLE
	1U0 C 01W	0 2V		С	1W – 1V	2V – 2W			NEOTINE
	1V	Q 2V		А	1U – 1W	2U – 2N			
65				В	1V – 1U	2V – 2N	$\frac{V_{H} \cdot V_{\overline{3}}}{V_{x}}$	YNzn1	
	1U O C O 1W	20 ° 2W		С	1W – 1V	2W – 2N	X		
	1V 0	a O 2V		А	1U – 1W	2U – 2N			
25	A	2U 2N b	—	В	1V – 1U	2V – 2N	$\frac{U1 \bullet V3}{U2}$	Yzn1	NEUTRAL ON
	1U O C O 1W	° 💊 2W		С	1W - 1V	2W – 2N			
	1V 0	a O ^{2V}	1W-1V	А	1U – 1W	2U – 2V			NO
26	в	2U b	1U–1W	В	1V– 1U	2V – 2W	$\frac{U1}{U2} \cdot \frac{\sqrt{3}}{2}$	Yz1	ACCESSIBLE
	1U 0 C 0 1W	° 2W	1V–1U	С	1W – 1V	2W – 2U			NEOTIAL
	1V O	a O 2U		А	1U – 1W	2W – 2N			NO
27	B A	2W 2N b	—	В	1V – 1U	2U – 2N	$\frac{U1 \bullet V_3}{U2}$	Yzn5	ACCESSIBLE NEUTRAL ON
	1U O C O 1W	° 2V 2V		С	1W – 1V	2V – 2N			WYE WINDING

	TRANSF CONFIGI	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	1V O	a Q 2U	1W-1V	A	1U – 1W	2W – 2U			NO
28	B	2W 0 b	1U–1W	В	1V – 1U	2U – 2V	$\frac{U1}{U2} \cdot \frac{V_3}{2}$	Yz5	ACCESSIBLE
	1U O C O1W	° 2V 2V	1V-1U	С	1W – 1V	2V – 2W			NEUTRAL
	1V 0	2W 0 C		A	1U – 1W	2N – 2U			
66			—	в	1V – 1U	2N – 2V	$\frac{V_{H}}{V_{H}} \cdot \frac{V_{3}}{V_{3}}$	YNzn7	
	1U O C O 1W	270		С	1W – 1V	2N – 2W	٧x		
	1V 0	2W 0 C		A	1U – 1W	2N – 2U			NO
29	A N		—	в	1V – 1U	2N – 2V	$\frac{U1 \bullet V3}{U2}$	Yzn7	ACCESSIBLE NEUTRAL ON
	1U O C O1W	2V O		С	1W – 1V	2N – 2W			WYE WINDING
	1V Q	2W 0 C	1W-1V	A	1U– 1W	2V – 2U			NO
30	B	b a 2U	1U–1W	В	1V – 1U	2W – 2V	$U_1 V_3$ U2 2	Yz7	ACCESSIBLE
	1UO C 01W	2V 0	1V–1U	С	1W – 1V	2U – 2W			
	1V 0	2V 0 C		A	1U – 1W	2N – 2W	V. V.		
67				В	1V – 1U	2N – 2U	V _X	YNzn11	
	1U O C O 1W	2U O		С	1W – 1V	2N – 2V			
	1V 0	2V 0 C		A	1U – 1W	2N – 2W			NO
31	B		—	В	1V – 1U	2N – 2U	$\frac{U1 \bullet V_3}{U2}$	Yzn11	ACCESSIBLE NEUTRAL ON
	1U O C O 1W	20 0		С	1W – 1V	2N – 2V	02		WYE WINDING
	1V 0	2V 0 c	1W-1V	A	1U – 1W	2U – 2W			NO
32	A N	b a 2W	1U-1W	В	1V – 1U	2V – 2U	U2 2	Yz11	ACCESSIBLE NEUTRAL
	1UO C 01W	2U O	1V-1U	С	1W – 1V	2W – 2V			
	1∪ QA	2U R	1V-1W	А	1U – 1N	2U– 2V	0.14		
55		c/a	1W-1U	В	1V – 1N	2V – 2W	3 U2	ZNd0	
	of B 0 1∨ 1₩ B	2W d b 2V	1U-1V	С	1W – 1N	2W – 2U			
	1∪ Q	2U R		A	1U – 1V	2U – 2V			NO
56		c a		В	1V – 1W	2V – 2W	<u>U1</u> U2	Zd0	ACCESSIBLE NEUTRAL ON
	1WO B 01V	2W O b2V		С	1W – 1U	2W – 2U			HIGH VOLTAGE
	1U Q _	2VQ b 2W	1V-1W	Α	1U – 1N	2V – 2U			
57		a	1W-1U	В	1V – 1N	2W – 2V	$\frac{2}{3} \cdot \frac{U1}{U2}$	ZNd6	
	1W O B 1V	2U	1U-1V	С	1W – 1N	2U – 2W			

	TRANSF CONFIGI	ORMER JRATION			WINDING TESTED				
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	1V Q	a p 2U		A	1U – 1N	2W – 2U			NO
33		2W • •	—	В	1V – 1N	2U – 2V	$\frac{U1}{U2 \bullet \sqrt{3}}$	ZNy5	ACCESSIBLE NEUTRAL ON
	001W	^۵ ک ₂ ۷		С	1W – 1N	2V – 2W			WYE WINDING
	1V Q	a /2 2U	1W-1V	A	1U – 1W	2W – 2U			NO
34		2W 0 C	1U-1W	В	1V – 1U	2U – 2V	$\frac{U1}{U2} \cdot \frac{V_3}{2}$	Zy5	ACCESSIBLE NEUTRAL
	0 C01₩ 1U	[▷] Ъ 2V	1V-1U	С	1W – 1V	2V – 2W			
	1V Q	2V Q		A	1U – 1N	2U – 2W			NO
35		a c O 2W	—	В	1V – 1N	2V – 2U	$\frac{U1}{U2 \bullet \sqrt{3}}$	ZNy11	ACCESSIBLE NEUTRAL ON
	0 C 0 1W	2U Ó		С	1W – 1N	2W – 2V			WYE WINDING
	1100	270	1W-1V	Α	1U – 1W	2U – 2W			NO
36	A B		1U–1W	в	1V – 1U	2V – 2U	U1 V3 U2 2	Zy11	ACCESSIBLE
	0 <u>C</u> 01₩	Ó 2U	1V-1U	С	1W – 1V	2W – 2V			NEOTINE
	2 1V	9 2V		Α	1U – 1V	2U – 2V		.	
58	AB	a b					U1 U2	0	
	0 01W	0 2U 02W	1U-1V 2U-2V	В	1U – 1W	2U – 2W			
	1 V Q	a 0 2V	1V-1W	Α	1U – 1W	2U – 2V	$\frac{U1}{U2} \cdot \frac{V_3}{2}$	Т-Т	
59	AB	o to						30	
	0 0 1U 1W	2U 2W	2U-2V	В	1V – 1W	2U – 2W	$\frac{U1}{U2} \sqrt[6]{\sqrt{3}}$	Lag	
	14 9	Q 2V	1V-1W	Α	1U – 1W	2U – 2W	$U_1 V_3$ U2 2	T-T	
60	AB							30	
	0 0 1U 1W	2U O a	2U-2W	В	1V – 1W	2V – 2U	$\frac{U1}{U2} \sqrt{\frac{2}{3}}$	Lead	

APPENDIX D – Australian Std.2374 Transformer Descriptions

	TRANSF CONFIGL	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	B Q	° ⊂^ a		А	A – C	c-a			
1	BC	b c		В	B – A	a – b		Dd6	
	A C A C	D D		С	C – B	b-c			
	вО	Оч		A	A – C	a-c			
37	B	b C	—	В	B – A	b-a		Dd0	
		ad <u>a</u> c		С	С – В	c-b			
	A O	c q b a		A	A – B	c – b	ну		
38	C A	a c		В	B-C	a-c		Dd2	
	с од В	b		С	C – A	b–a			
	Â	с 0		Α	A – B	c – a			
39	C/A	c/a		В	B – C	a – b		Dd4	
	с об в	b o a		С	C – A	b-c			
	AQ	рđ		A	A – B	b-c			
40	C A	c/a	· · · · · · · · · · · · · · · · · · ·	В	B – C	с-а		Dd8	
	с с	a d <u>b</u> c		С	C – A	a – b			
	Â	a c b b		Α	A – B	a – c			
41	C/A	a c		В	B – C	b – a		Dd10	
	со́ _в ов	с С		С	C – A	c – b			
	Â	۶ª		Α	A – C	a – η			
42	A B	¢⊙₋⊂⊄ [°]	—	В	B – A	b-η	$\frac{HV \cdot V_3}{LV}$	Dyn1	
	со́ов	ბ _ხ		С	С – В	c-η			
	в Q	^ه م	C – B	Α	A – C	a – c			NO
2	B C		A – C	В	B – A	b-a	HV •V3	Dy1	ACCESSIBLE NEUTRAL ON
	A O A C	్	B – A	С	C – B	c-b			WYE WINDING
	B Q	^a مر	C – B	Α	A – C	a – b			NO
61	B C	<i>b a</i> o b	A - C	В	B – A	b-c	$\frac{v_{H} \cdot v_{3}}{v_{x}}$	Dy3	ACCESSIBLE NEUTRAL ON
	A O A O C	c ^O	B – A	С	С – В	c – a			WYE WINDING
	в Q	^a م د		Α	A – C	$\eta-b$			
62	B C	^b / _n b	—	В	B – A	$\eta-c$		Dyn3	
	A C A C	°,		С	C – B	η – a			

	TRANSF CONFIGI	TRANSFORMER CONFIGURATION WINDING TESTED		TESTED					
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	В	۶°		Α	A – C	$c-\eta$			
3	BC	۰۰ <u>°</u> م	—	В	B – A	a-η	$\frac{HV \bullet \sqrt{3}}{VV}$	Dyn5	
	A O A C	်ဝဲ။		С	C – B	$b-\eta$	Lv		
	рш	, O a	С – В	Α	A – C	c – b			NO
4	B	° • • •	A - C	В	B – A	a – c	$\frac{HV \bullet \sqrt{3}}{LV}$	Dy5	ACCESSIBLE NEUTRAL ON
		άĊ	B – A	С	С – В	b-a	2.		WYE WINDING
	B	۹ <i>م</i> د		A	A – C	η – a			
5	B C	$h^{\frac{a}{h}}$ $h^{\frac{a}{h}}$	—	В	B – A	$\eta-b$	$\frac{HV \cdot V_3}{LV}$	Dyn7	
	A C A C	ьΌ		С	С – В	η– c			
	BQ	۹ <i>م</i> د	С – В	A	A - C	c – a			NO
6	BC	$\eta \rightarrow 0 a$	A – C	в	B – A	a – b	$\frac{HV \bullet V_3}{LV}$	Dy7	ACCESSIBLE NEUTRAL ON
		ь d °	B – A	С	С – В	b-c			WYE WINDING
	В	ہ م	С – В	A	B – C	b – a			NO
63	B	ь 0 <u>а</u>	A – C	В	B – A	c – b	$\frac{HV \bullet \sqrt{3}}{V}$	Dy9	ACCESSIBLE NEUTRAL ON
		်ဝဲa	B – A	С	С – В	a – c	2.1		WYE WINDING
	в Q	۶°		A	A – C	b-η			
64	B C	٥ <u>°</u> αη	—	В	B – A	c – η	$\frac{HV \bullet \sqrt{3}}{LV}$	Dyn9	
		်ဝဲ a		С	С – В	a – η			
	B Q	۵Q _с		A	A – C	η – c			
7	B C			В	B – A	η–a	$\frac{HV \bullet \sqrt{3}}{LV}$	Dyn11	
		a O ″		С	С – В	η– b			
	B	• Q c	С – В	A	A – C	b-c			NO
8	B C	$\eta \overset{a}{\underset{b}{\longrightarrow}} \circ \circ$	A – C	В	B – A	c – a		Dy11	ACCESSIBLE NEUTRAL ON
		aŐĭ	B – A	С	С – В	a – b			WYE WINDING
	A Q	å	B-C	A	A – B	a – η			
45	C A	$c - c h^a$	C – A	В	B – C	b-η	$\frac{3}{2} \cdot \frac{HV}{LV}$	Dzn0	
	сб	со <u></u> оъ	A – B	С	C – A	c-η			
	Â	ေတ္ ၇ ခ	B-C	С	A – B	$\eta - b$			
46	C/A	_α ζη ⁻	C – A	A	B – C	η-c	2 LV	Dzn2	
	с о́ в в	۶۳	A – B	В	C – A	η– a			

	TRANSFORMER CONFIGURATION				WINDING TESTED				
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	Å	°°		A	A – B	c – b	ну		NO
47	C A			В	B – C	a – c	LV	Dz2	ACCESSIBLE NEUTRAL
	с о ов	٥ı		C	C – A	b-a			
	Â	2°	B-C	A	A – B	c – η	зну		
48			C – A	В	B – C	a – η	2 LV	Dzn4	
	соов		A – B	С	C – A	b-η			
	Â	P°		A	A – B	c – a	ну		NO
49	C A			В	B – C	a – b		DZ4	ACCESSIBLE NEUTRAL
	с о ов	b0— _с 0 а		С	C – A	b-c			
	Å	۵۹		A	A – C	a – c	ну		NO
9	B C		-	В	B – A	b–a	LV	Dz0	ACCESSIBLE NEUTRAL
	А б b с	aOOc		С	С – В	c – b			
	в А	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°		А	A – C	с – а	ЦУ		NO
10	B C	b a		В	B – A	a – b	LV	Dz6	ACCESSIBLE NEUTRAL
	A O A O C	Ŋ۵		С	С – В	b-c			
	Â	ه م ه	B-C	A	A – B	η – a	3 HV		
50	$C \land A$	α ⟨η ^۲	C – A	В	B – C	η – b	2 LV	Dzn6	
	с б в	Q a	A – B	С	C – A	η – c			
	Â	b Q a	B-C	A	A – B	b-η	2 10/		
51	C	.,{q́η	C – A	В	B – C	c-η	$\frac{3}{2} \cdot \frac{HV}{LV}$	Dzn8	
	со _в ов		A – B	С	C – A	a – η			
	Â	b Q <i>a</i>		A	A – B	b-c			NO
52	C/ A	, <u> </u>		В	B – C	с – а	LV	Dz8	ACCESSIBLE NEUTRAL
	с О <u></u> В В			С	C – A	a – b			
	Â	° °	B – C	A	A – B	η – c	0 111		
53	$C \land A$	^b dn	C – A	В	B – C	η – a	$\frac{3}{2} \cdot \frac{HV}{LV}$	Dzn10	
	со _в ов	•0	A – B	С	C – A	η–b			
	Â	aQOb		A	A – B	a – c	1.5.7		NO
54	C/ A	b a		В	B – C	b–a		Dz10	ACCESSIBLE NEUTRAL
	с Ф <u></u> В В	۰Ó		С	C – A	c-b			

	TRANSFORMER CONFIGURATION				WINDING TESTED				
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	В	° A		А	A - N	b – a			
11	$A \stackrel{B}{\longrightarrow} N$		—	В	B – N	c – b		YNd7	
	A O C O C	a o <i>a</i>		С	C – N	a – c			
	вО	a ph		Α	A - N	a – b			
44	$A \stackrel{B}{\frown} N$	a 🗸 b		В	B – N	b-c	$\frac{HV}{LV \bullet \sqrt{3}}$	YNd1	
	AO COC	، کر ،		С	C – N	с – а			
	вО	[°]	С – В	А	A – C	a – b			NO
12	A	a 🔨 🛛 b	A - C	В	B – A	b-c	$\frac{HV}{LV} \cdot \frac{V_3}{2}$	Yd1	ACCESSIBLE NEUTRAL ON
	AO COC	۰۵۰	B – A	С	С – В	c – a			WYE WINDING
	B O	a a		Α	A – N	c – a	LIV/		
13	$A \stackrel{B}{\longrightarrow} N$	° C b	—	В	B – N	a – b	$\frac{1}{1}$	YNd5	
	AO COC	· که ۵		С	C-N	b – c			
	B O	a**	С – В	Α	A – C	c – a			NO
14	B A	° C b	A – C	В	B – A	a – b	$\frac{HV}{LV} \cdot \frac{\sqrt{3}}{2}$	Yd5	ACCESSIBLE NEUTRAL ON
	AO COC	۲ کې له	B – A	С	С – В	b – c			WYE WINDING
	В	°	С – В	Α	A – C	b–a			NO
15	B A	b a	A – C	В	B – A	c – b	$\frac{HV}{LV} \cdot \frac{V_3}{2}$	Yd7	ACCESSIBLE NEUTRAL ON
	AO COC	b o a	B – A	С	С – В	a – c			WYE WINDING
	B	• • • •		A	A– N	a – c	1.1.7		
16	$A \xrightarrow{B} N$	b c	—	В	B – N	b – a	$\frac{HV}{LV \cdot \sqrt{3}}$	YNd11	
	AO COC	a O ^u		С	C – N	c – b			
	в	• ° [°]	С – В	A	A – C	a – c			NO
17	B A	b > °	A – C	В	B – A	b – a	$\frac{HV}{LV} \cdot \frac{V_3}{2}$	Yd11	NEUTRAL ON
	AO COC	a O a	B – A	С	С – В	c – b			WYE WINDING
	в Q			A	A – N	η – a			
18		jμ	—	В	B – N	η-b		YNyn6	
	AO COC	b		С	C – N	η – c			
	в Q	ь Q	B – N	A	A – N	a-b			NO ACCESSIBLE
19	A	a b	C – N	В	B – N	b – c		YNy0	NEUTRAL ON LOW VOLTAGE
	AO COC	a O C O C	A – N	С	C – N	с-а			WINDING

	TRANSF CONFIGI	ORMER JRATION			WINDING TESTED				
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	В	b O	c – h	A	A – C	a – η	1157		
20	B	_ ^b ∫η	a – h	В	B – C	$b-\eta$		Yyn0	NEUTRAL ON
	A O C O C	a 0 ° 0 c	b – h	С	С – В	c-η			WINDING
	В	Ь		A	A - N	a-ŋ	HV		
43	$A \stackrel{B}{\longrightarrow} N$	abIn	—	В	B – N	$b-\eta$		YNyn0	
	AO COC	a O C O C		С	C – N	c-η			
	в	ьC		A	A – C	a-c	ЦУ		NO
21	A	b a		В	B-A	b – a		Yy0	ACCESSIBLE NEUTRAL
	AO COC	a O C O C		С	С – В	c – b			
	В	° Q _ a Q a	B – N	A	A - N	b – a	ну		
22	A = A = A = A	b	C – N	В	B – N	c – b		YNy6	NEUTRAL ON
	AO COC	Ь	A - N	С	C – N	a-c			WINDING
	В		c – h	Α	A – C	η – a	LIN		NO ACCESSIBLE
23	^B _A	်မှိက	a – h	В	B – A	η-b		Yyn6	NEUTRAL ON
	AO COC	ь	b – h	С	С – В	η– c			WINDING
	В	° 0,		A	A – C	c-a	ну		NO
24	A	b	—	В	B – A	a – b		Yy6	ACCESSIBLE NEUTRAL
	AO COC	ьО		С	C – B	b-c			
	в	Q b		Α	A – C	a – η			
65		ao γη [°]	—	В	B – A	b-η	$\frac{V_{H} \cdot V_{3}}{V_{X}}$	YNzn1	
	AO COC	ہ مر ٰ		С	С – В	c – η			
	B O	а		A	A – C	a – η	V		NO ACCESSIBLE
25	A	ao η ^ρ	—	В	B – A	b-η		Yzn1	NEUTRAL ON
	AO COC	ەمر		С	С – В	c – η			
	B		С – В	A	A – C	a-b			NO
26	A	a O	A – C	В	B – A	b-c	$\frac{HV}{LV} \cdot \frac{V_3}{2}$	Yz1	ACCESSIBLE NEUTRAL
	AO COC	ہ مر ،	B – A	С	С – В	с – а			
	В			A	A – C	c-η			NO
27	A	co on b	—	В	B – A	a-η	HV V3	Yzn5	NEUTRAL ON
	A O C O C	٩٩٢		С	C – B	$b-\eta$			WYE WINDING
	TRANSFORMER CONFIGURATION				WINDING TESTED				
---------------------	-------------------------------------	------------------------------	----------------	-------	----------------------------	---------------------------	---	-----------------	--------------------------
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	В	a Qa	C – B	A	A – C	c–a			NO
28	B	co b	A – C	В	B – A	a – b	$\frac{HV}{LV} \cdot \frac{V_3}{2}$	Yz5	ACCESSIBLE
	A O C O C	٩٩٢	B – A	С	C – B	b-c			NEUTRAL
	в	، مر _د		A	A – C	η – a			
66	$A \stackrel{B}{\longrightarrow} N$	b a a	—	В	B – A	$\eta - b$	$\frac{V_{H}}{V_{H}} \cdot \frac{V_{3}}{V_{3}}$	YNzn7	
	AO COC	ь О ^а		С	С – В	$\eta-c$	٧x		
	в	۰ <i>م</i> ر د		A	A – C	η – a			NO
29	A		—	В	B – A	$\eta-b$	$\frac{HV \bullet V_3}{LV}$	Yzn7	NEUTRAL ON
	AO COC	ъО		С	С – В	η– c			WYE WINDING
	В	۰ <i>مر</i> د	С-В	A	A– C	b–a			NO
30	A	b a a	A – C	В	B – A	c-b	$\frac{HV}{LV} \cdot \frac{V_3}{2}$	Yz7	ACCESSIBLE
	AO COC	ъÓ	B – A	С	С – В	a – c			112011112
	В	^م مر _د		A	A – C	η – c	Vu Va		
67	$A \stackrel{B}{\longrightarrow} N$		—	В	B – A	η-a	V _X	Yzn11	
	AO COC	ъÓ		С	С – В	η– b			
	B	۵ مر _د		A	A – C	η – c			NO
31	B	$b $ $d $ $\eta $ $o $ c	—	В	B – A	η–a	$\frac{HV \bullet V_3}{IV}$	Yz11	ACCESSIBLE NEUTRAL ON
	AO COC	۵Ö		С	С – В	η– b	2.		WYE WINDING
	в	۵ مر د	С-В	A	A – C	a – c	HV Vā		NO
32		b c c c	A – C	В	B – A	b – a	LV • 2	Yz11	ACCESSIBLE NEUTRAL
	AO COC	aO	B – A	С	С – В	c – b			
	A	å	b-c	Α	A – N	a – b	2 41/		
55		c/a	c – a	В	B – N	b-c	$\frac{2}{3} \cdot \frac{11}{LV}$	ZNd0	
	сб _в —ов	с О <u></u> b b	a-b	С	C – N	c – a			
	A	a A		A	A – B	a – b	1.157		NO
56	<u> </u>	c/a	—	В	B – C	b-c	LV	Zd0	ACCESSIBLE NEUTRAL ON
	со _в —ов	۵ <u>۵</u> که		С	C – A	c – a			HIGH VOLTAGE
	A	b Q b C	b-c	A	A – N	b – a	157		
57	<u></u> N	a c	с – а	В	B – N	c – b	LV	ZNd6	
	сб _в ∕—ов	O a	a – b	С	C – N	a – c			

AUSTRALIAN.050108A6

	TRANSFORMER CONFIGURATION				WINDING TESTED				
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	В	a Qa	C – B	A	A – C	c – a			NO
28	AB	c O (A – C	В	B – A	a – b	$\frac{HV}{LV} \cdot \frac{V_3}{2}$	Yz5	ACCESSIBLE
	A O C O C	٩٩٢	B – A	С	C – B	b-c			NEUTRAL
	в	• مر _د		A	A – C	η – a			
66	$A \stackrel{B}{\longrightarrow} N$	b a a	—	В	B – A	$\eta-b$	$\frac{V_{H}}{V_{H}} \cdot \frac{V_{3}}{V_{3}}$	YNzn7	
	AO COC	b O		С	С – В	$\eta-c$	۰x		
	в	• مر _د		A	A – C	η – a			NO
29	A		—	В	B – A	$\eta-b$	HV • V3 LV	Yzn7	NEUTRAL ON
	AO COC	٥Ö		С	С – В	η– c			WYE WINDING
	В	۰ <i>مر</i> د	С-В	A	A– C	b–a	_		NO
30	B	b a a	A – C	В	B – A	c-b	$\frac{HV}{LV} \cdot \frac{V_3}{2}$	Yz7	ACCESSIBLE
	AO COC	ьŎ	B – A	С	C – B	a – c			NEOTINE
	вО	، مر ،		A	A – C	η – c			
67	$A \stackrel{B}{\longrightarrow} N$		—	В	B – A	η-a	V _X	Yzn11	
	AO COC	٥Å		С	С – В	η– b			
	В	۵ مر		A	A – C	η-c			NO
31		b d n o c	—	В	B – A	η <i>–</i> a	$\frac{HV \bullet V_3}{V}$	Yz11	ACCESSIBLE NEUTRAL ON
	AO COC	a O		С	С – В	η– b	LV		WYE WINDING
	в	۵ مر د	С – В	A	A - C	a – c			NO
32		b c c	A – C	В	B – A	b – a	$\frac{HV}{LV} \cdot \frac{V_3}{2}$	Yz11	ACCESSIBLE NEUTRAL
	AO COC	a O	B – A	С	С – В	c-b			
	٩	ª Q	b-c	A	A – N	a – b			
55		c/a	c – a	В	B-N	b-c	$\frac{2}{3} \cdot \frac{HV}{LV}$	ZNd0	
	с б _в — о в	с О́b b	a – b	С	C – N	c – a			
	Â,	a Q		A	A – B	a – b			NO
56	C A	c/a	—	В	B-C	b-c	HV LV	Zd0	ACCESSIBLE NEUTRAL ON
	со _в ов	с о́ b		С	C – A	c-a			HIGH VOLTAGE
	Â,	bQ;> c	b-c	A	A – N	b–a			
57		a c	c – a	В	B – N	c – b	HV LV	ZNd6	
	сб _в ∕—ов	Ю а	a-b	С	C – N	a – c			

AUSTRALIAN.050108A6

Vanguard Instruments Company, Inc.

1520 S. Hellman Ave • Ontario, CA 91761 • USA

Phone: 909-923-9390 • Fax: 909-923-9391

www.vanguard-instruments.com

Copyright © 2016 by Vanguard Instruments Company, Inc.

TRF-100 User's Manual • Revision 1.0 • May 9, 2016 • TA